
Jizhong Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8145320/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular ecological network analyses. BMC Bioinformatics, 2012, 13, 113.	2.6	1,917
2	Stochastic Community Assembly: Does It Matter in Microbial Ecology?. Microbiology and Molecular Biology Reviews, 2017, 81, .	6.6	1,291
3	The interconnected rhizosphere: High network complexity dominates rhizosphere assemblages. Ecology Letters, 2016, 19, 926-936.	6.4	803
4	Phylogenetic Molecular Ecological Network of Soil Microbial Communities in Response to Elevated CO ₂ . MBio, 2011, 2, .	4.1	771
5	Functional Molecular Ecological Networks. MBio, 2010, 1, .	4.1	717
6	A Proposed Genus Boundary for the Prokaryotes Based on Genomic Insights. Journal of Bacteriology, 2014, 196, 2210-2215.	2.2	708
7	Climate warming enhances microbial network complexity and stability. Nature Climate Change, 2021, 11, 343-348.	18.8	672
8	Spatial and Resource Factors Influencing High Microbial Diversity in Soil. Applied and Environmental Microbiology, 2002, 68, 326-334.	3.1	599
9	Stochasticity, succession, and environmental perturbations in a fluidic ecosystem. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E836-45.	7.1	595
10	Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME Journal, 2016, 10, 1669-1681.	9.8	593
11	GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME Journal, 2007, 1, 67-77.	9.8	554
12	Microbial mediation of carbon-cycle feedbacks to climate warming. Nature Climate Change, 2012, 2, 106-110.	18.8	502
13	Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nature Microbiology, 2019, 4, 1183-1195.	13.3	491
14	A general framework for quantitatively assessing ecological stochasticity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16892-16898.	7.1	482
15	Temperature mediates continental-scale diversity of microbes in forest soils. Nature Communications, 2016, 7, 12083.	12.8	419
16	A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming. Nature Communications, 2020, 11, 4717.	12.8	417
17	Reproducibility and quantitation of amplicon sequencing-based detection. ISME Journal, 2011, 5, 1303-1313.	9.8	412
18	High-Throughput Metagenomic Technologies for Complex Microbial Community Analysis: Open and Closed Formats. MBio, 2015, 6, .	4.1	357

Јігнонс Zhou

#	Article	IF	CITATIONS
19	Simultaneous Recovery of RNA and DNA from Soils and Sediments. Applied and Environmental Microbiology, 2001, 67, 4495-4503.	3.1	341
20	Network succession reveals the importance of competition in response to emulsified vegetable oil amendment for uranium bioremediation. Environmental Microbiology, 2016, 18, 205-218.	3.8	339
21	Microbial regulation of the soil carbon cycle: evidence from gene–enzyme relationships. ISME Journal, 2016, 10, 2593-2604.	9.8	324
22	Biodegradation of Polyethylene and Plastic Mixtures in Mealworms (Larvae of <i>Tenebrio) Tj ETQq0 0 0 rgBT /O 6526-6533.</i>	verlock 10 10.0) Tf 50 627 Td 316
23	GeoChip 3.0 as a high-throughput tool for analyzing microbial community composition, structure and functional activity. ISME Journal, 2010, 4, 1167-1179.	9.8	300
24	Stochastic Assembly Leads to Alternative Communities with Distinct Functions in a Bioreactor Microbial Community. MBio, 2013, 4, .	4.1	293
25	Spatial scaling of functional gene diversity across various microbial taxa. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7768-7773.	7.1	285
26	Environmental filtering decreases with fish development for the assembly of gut microbiota. Environmental Microbiology, 2016, 18, 4739-4754.	3.8	267
27	Microarray-Based Analysis of Subnanogram Quantities of Microbial Community DNAs by Using Whole-Community Genome Amplification. Applied and Environmental Microbiology, 2006, 72, 4931-4941.	3.1	263
28	Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming. Nature Climate Change, 2016, 6, 595-600.	18.8	260
29	Shifts in soil microorganisms in response to warming are consistent across a range of Antarctic environments. ISME Journal, 2012, 6, 692-702.	9.8	258
30	Aridity threshold in controlling ecosystem nitrogen cycling in arid and semi-arid grasslands. Nature Communications, 2014, 5, 4799.	12.8	254
31	The microbial gene diversity along an elevation gradient of the Tibetan grassland. ISME Journal, 2014, 8, 430-440.	9.8	249
32	An integrated insight into the response of sedimentary microbial communities to heavy metal contamination. Scientific Reports, 2015, 5, 14266.	3.3	235
33	Successional Trajectories of Rhizosphere Bacterial Communities over Consecutive Seasons. MBio, 2015, 6, e00746.	4.1	232
34	Phasing amplicon sequencing on Illumina Miseq for robust environmental microbial community analysis. BMC Microbiology, 2015, 15, 125.	3.3	222
35	Constructing gene co-expression networks and predicting functions of unknown genes by random matrix theory. BMC Bioinformatics, 2007, 8, 299.	2.6	221
36	Responses of the functional structure of soil microbial community to livestock grazing in the <scp>T</scp> ibetan alpine grassland. Global Change Biology, 2013, 19, 637-648.	9.5	216

#	Article	IF	CITATIONS
37	Climate warming leads to divergent succession of grassland microbial communities. Nature Climate Change, 2018, 8, 813-818.	18.8	208
38	Small and mighty: adaptation of superphylum Patescibacteria to groundwater environment drives their genome simplicity. Microbiome, 2020, 8, 51.	11.1	205
39	Efficient Genome Editing in Clostridium cellulolyticum via CRISPR-Cas9 Nickase. Applied and Environmental Microbiology, 2015, 81, 4423-4431.	3.1	195
40	Oral microbiota of periodontal health and disease and their changes after nonsurgical periodontal therapy. ISME Journal, 2018, 12, 1210-1224.	9.8	188
41	GeoChip 4: a functional geneâ€arrayâ€based highâ€throughput environmental technology for microbial community analysis. Molecular Ecology Resources, 2014, 14, 914-928.	4.8	183
42	The energetic and carbon economic origins of leaf thermoregulation. Nature Plants, 2016, 2, 16129.	9.3	178
43	Long-term successional dynamics of microbial association networks in anaerobic digestion processes. Water Research, 2016, 104, 1-10.	11.3	177
44	Natural Bacterial Communities Serve as Quantitative Geochemical Biosensors. MBio, 2015, 6, e00326-15.	4.1	173
45	Application of random matrix theory to biological networks. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 357, 420-423.	2.1	172
46	How sulphate-reducing microorganisms cope with stress: lessons from systems biology. Nature Reviews Microbiology, 2011, 9, 452-466.	28.6	169
47	Biodegradation of polystyrene wastes in yellow mealworms (larvae of Tenebrio molitor Linnaeus): Factors affecting biodegradation rates and the ability of polystyrene-fed larvae to complete their life cycle. Chemosphere, 2018, 191, 979-989.	8.2	168
48	Elevated nitrate enriches microbial functional genes for potential bioremediation of complexly contaminated sediments. ISME Journal, 2014, 8, 1932-1944.	9.8	164
49	Differentiation strategies of soil rare and abundant microbial taxa in response to changing climatic regimes. Environmental Microbiology, 2020, 22, 1327-1340.	3.8	164
50	Analyses of soil microbial community compositions and functional genes reveal potential consequences of natural forest succession. Scientific Reports, 2015, 5, 10007.	3.3	162
51	Phylogenetic and functional gene structure shifts of the oral microbiomes in periodontitis patients. ISME Journal, 2014, 8, 1879-1891.	9.8	157
52	Salt Stress in Desulfovibrio vulgaris Hildenborough: an Integrated Genomics Approach. Journal of Bacteriology, 2006, 188, 4068-4078.	2.2	155
53	Plant Thermoregulation: Energetics, Trait–Environment Interactions, and Carbon Economics. Trends in Ecology and Evolution, 2015, 30, 714-724.	8.7	154
54	Land use change alters functional gene diversity, composition and abundance in Amazon forest soil microbial communities. Molecular Ecology, 2014, 23, 2988-2999.	3.9	152

#	Article	IF	CITATIONS
55	Root exudates drive soilâ€microbeâ€nutrient feedbacks in response to plant growth. Plant, Cell and Environment, 2021, 44, 613-628.	5.7	150
56	Warming enhances old organic carbon decomposition through altering functional microbial communities. ISME Journal, 2017, 11, 1825-1835.	9.8	136
57	Niche differentiation is spatially and temporally regulated in the rhizosphere. ISME Journal, 2020, 14, 999-1014.	9.8	135
58	Microbial Diversity and Heterogeneity in Sandy Subsurface Soils. Applied and Environmental Microbiology, 2004, 70, 1723-1734.	3.1	134
59	Microbial community structure and function of Nitrobenzene reduction biocathode in response to carbon source switchover. Water Research, 2014, 54, 137-148.	11.3	134
60	Long-term soil transplant simulating climate change with latitude significantly alters microbial temporal turnover. ISME Journal, 2015, 9, 2561-2572.	9.8	134
61	The Electron Transfer System of Syntrophically Grown <i>Desulfovibrio vulgaris</i> . Journal of Bacteriology, 2009, 191, 5793-5801.	2.2	133
62	Microbial functional diversity: From concepts to applications. Ecology and Evolution, 2019, 9, 12000-12016.	1.9	133
63	Soil Microbial Community Responses to a Decade of Warming as Revealed by Comparative Metagenomics. Applied and Environmental Microbiology, 2014, 80, 1777-1786.	3.1	131
64	Predicting taxonomic and functional structure of microbial communities in acid mine drainage. ISME Journal, 2016, 10, 1527-1539.	9.8	130
65	Ubiquity of polystyrene digestion and biodegradation within yellow mealworms, larvae of Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae). Chemosphere, 2018, 212, 262-271.	8.2	130
66	Impacts of the Three Gorges Dam on microbial structure and potential function. Scientific Reports, 2015, 5, 8605.	3.3	129
67	Functional Potential of Soil Microbial Communities in the Maize Rhizosphere. PLoS ONE, 2014, 9, e112609.	2.5	127
68	Microecological Koch's postulates reveal that intestinal microbiota dysbiosis contributes to shrimp white feces syndrome. Microbiome, 2020, 8, 32.	11.1	126
69	Longâ€ŧerm nitrogen addition modifies microbial composition and functions for slow carbon cycling and increased sequestration in tropical forest soil. Global Change Biology, 2019, 25, 3267-3281.	9.5	121
70	Microbial community composition and functions are resilient to metal pollution along two forest soil gradients. FEMS Microbiology Ecology, 2015, 91, 1-11.	2.7	120
71	Selection of optimal oligonucleotide probes for microarrays using multiple criteria, global alignment and parameter estimation. Nucleic Acids Research, 2005, 33, 6114-6123.	14.5	113
72	Biodegradability of wastewater determines microbial assembly mechanisms in full-scale wastewater treatment plants. Water Research, 2020, 169, 115276.	11.3	109

#	Article	IF	CITATIONS
73	Community structure and elevational diversity patterns of soil Acidobacteria. Journal of Environmental Sciences, 2014, 26, 1717-1724.	6.1	107
74	Evaluation of the reproducibility of amplicon sequencing with Illumina MiSeq platform. PLoS ONE, 2017, 12, e0176716.	2.5	107
75	Soil organic matter quantity and quality shape microbial community compositions of subtropical broadleaved forests. Molecular Ecology, 2015, 24, 5175-5185.	3.9	106
76	Soil organic matter availability and climate drive latitudinal patterns in bacterial diversity from tropical to cold temperate forests. Functional Ecology, 2018, 32, 61-70.	3.6	106
77	Lateral Gene Transfer in a Heavy Metal-Contaminated-Groundwater Microbial Community. MBio, 2016, 7, e02234-15.	4.1	105
78	Illumina sequencing-based analysis of free-living bacterial community dynamics during an Akashiwo sanguine bloom in Xiamen sea, China. Scientific Reports, 2015, 5, 8476.	3.3	101
79	Belowground Response to Drought in a Tropical Forest Soil. I. Changes in Microbial Functional Potential and Metabolism. Frontiers in Microbiology, 2016, 7, 525.	3.5	100
80	Preliminary analysis of salivary microbiome and their potential roles in oral lichen planus. Scientific Reports, 2016, 6, 22943.	3.3	99
81	The polycyclic aromatic hydrocarbon degradation potential of Gulf of Mexico native coastal microbial communities after the Deepwater Horizon oil spill. Frontiers in Microbiology, 2014, 5, 205.	3.5	98
82	The microbe-mediated mechanisms affecting topsoil carbon stock in Tibetan grasslands. ISME Journal, 2015, 9, 2012-2020.	9.8	98
83	Microbial mediation of biogeochemical cycles revealed by simulation of global changes with soil transplant and cropping. ISME Journal, 2014, 8, 2045-2055.	9.8	97
84	Integrated metagenomics and network analysis of soil microbial community of the forest timberline. Scientific Reports, 2015, 5, 7994.	3.3	97
85	Random Sampling Process Leads to Overestimation of β-Diversity of Microbial Communities. MBio, 2013, 4, e00324-13.	4.1	96
86	Nutrient supply controls the linkage between species abundance and ecological interactions in marine bacterial communities. Nature Communications, 2022, 13, 175.	12.8	95
87	Soil bacterial diversity patterns and drivers along an elevational gradient on <scp>S</scp> hennongjia Mountain, <scp>C</scp> hina. Microbial Biotechnology, 2015, 8, 739-746.	4.2	94
88	Effects of residual organics in municipal wastewater on hydrogenotrophic denitrifying microbial communities. Journal of Environmental Sciences, 2018, 65, 262-270.	6.1	94
89	Taxonomic and Functional Diversity of Soil and Hypolithic Microbial Communities in Miers Valley, McMurdo Dry Valleys, Antarctica. Frontiers in Microbiology, 2016, 7, 1642.	3.5	93
90	Energetic Consequences of Nitrite Stress in Desulfovibrio vulgaris Hildenborough, Inferred from Global Transcriptional Analysis. Applied and Environmental Microbiology, 2006, 72, 4370-4381.	3.1	92

#	Article	IF	CITATIONS
91	Response of chloramphenicol-reducing biocathode resistome to continuous electrical stimulation. Water Research, 2019, 148, 398-406.	11.3	90
92	Scale-dependent effects of climate and geographic distance on bacterial diversity patterns across northern China's grasslands. FEMS Microbiology Ecology, 2015, 91, fiv133.	2.7	87
93	Reduction of microbial diversity in grassland soil is driven by long-term climate warming. Nature Microbiology, 2022, 7, 1054-1062.	13.3	86
94	Seasonal dynamics of the microbial community in two full-scale wastewater treatment plants: Diversity, composition, phylogenetic group based assembly and co-occurrence pattern. Water Research, 2021, 200, 117295.	11.3	83
95	Climate warming accelerates temporal scaling of grassland soil microbial biodiversity. Nature Ecology and Evolution, 2019, 3, 612-619.	7.8	82
96	Responses of Microbial Communities to Single-Walled Carbon Nanotubes in Phenol Wastewater Treatment Systems. Environmental Science & Technology, 2015, 49, 4627-4635.	10.0	81
97	Electrical selection for planktonic sludge microbial community function and assembly. Water Research, 2021, 206, 117744.	11.3	81
98	Distinct responses of soil microbial communities to elevated CO2 and O3 in a soybean agro-ecosystem. ISME Journal, 2014, 8, 714-726.	9.8	80
99	Long-Term Oil Contamination Alters the Molecular Ecological Networks of Soil Microbial Functional Genes. Frontiers in Microbiology, 2016, 7, 60.	3.5	80
100	Interannual variability in responses of belowground net primary productivity (<scp>NPP</scp>) and <scp>NPP</scp> partitioning to longâ€ŧerm warming and clipping in a tallgrass prairie. Global Change Biology, 2012, 18, 1648-1656.	9.5	79
101	Long-term cultivation of a stable Methylocystis -dominated methanotrophic enrichment enabling tailored production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Bioresource Technology, 2015, 198, 811-818.	9.6	79
102	Regional and global elevational patterns of microbial species richness and evenness. Ecography, 2017, 40, 393-402.	4.5	79
103	Comparative metagenomics reveals impact of contaminants on groundwater microbiomes. Frontiers in Microbiology, 2015, 6, 1205.	3.5	77
104	Microbial community assembly differs across minerals in a rhizosphere microcosm. Environmental Microbiology, 2018, 20, 4444-4460.	3.8	77
105	Plant–microbe networks in soil are weakened by centuryâ€ŀong use of inorganic fertilizers. Microbial Biotechnology, 2019, 12, 1464-1475.	4.2	77
106	Biogeographic patterns of soil diazotrophic communities across six forests in the North America. Molecular Ecology, 2016, 25, 2937-2948.	3.9	76
107	Nearly a decadeâ€long repeatable seasonal diversity patterns of bacterioplankton communities in the eutrophic Lake Donghu (Wuhan, China). Molecular Ecology, 2017, 26, 3839-3850.	3.9	76
108	Molecular mechanisms of water table lowering and nitrogen deposition in affecting greenhouse gas emissions from a Tibetan alpine wetland. Global Change Biology, 2017, 23, 815-829.	9.5	75

#	Article	IF	CITATIONS
109	Warming-induced permafrost thaw exacerbates tundra soil carbon decomposition mediated by microbial community. Microbiome, 2020, 8, 3.	11.1	75
110	Enhanced decomposition of stable soil organic carbon and microbial catabolic potentials by longâ€ŧerm field warming. Global Change Biology, 2017, 23, 4765-4776.	9.5	74
111	Responses of Aromatic-Degrading Microbial Communities to Elevated Nitrate in Sediments. Environmental Science & Technology, 2015, 49, 12422-12431.	10.0	72
112	The functional gene composition and metabolic potential of coral-associated microbial communities. Scientific Reports, 2015, 5, 16191.	3.3	71
113	Analysis of a Ferric Uptake Regulator (Fur) Mutant of <i>Desulfovibrio vulgaris</i> Hildenborough. Applied and Environmental Microbiology, 2007, 73, 5389-5400.	3.1	70
114	Microbial functional trait of rRNA operon copy numbers increases with organic levels in anaerobic digesters. ISME Journal, 2017, 11, 2874-2878.	9.8	70
115	More replenishment than priming loss of soil organic carbon with additional carbon input. Nature Communications, 2018, 9, 3175.	12.8	69
116	Microbial extracellular polysaccharide production and aggregate stability controlled by switchgrass (Panicum virgatum) root biomass and soil water potential. Soil Biology and Biochemistry, 2020, 143, 107742.	8.8	69
117	Bacteriophage–prokaryote dynamics and interaction within anaerobic digestion processes across time and space. Microbiome, 2017, 5, 57.	11.1	68
118	Impact of elevated nitrate on sulfate-reducing bacteria: a comparative Study of <i>Desulfovibrio vulgaris</i> . ISME Journal, 2010, 4, 1386-1397.	9.8	67
119	Gene-informed decomposition model predicts lower soil carbon loss due to persistent microbial adaptation to warming. Nature Communications, 2020, 11, 4897.	12.8	67
120	Functional responses of methanogenic archaea to syntrophic growth. ISME Journal, 2012, 6, 2045-2055.	9.8	66
121	Crude oil as a microbial seed bank with unexpected functional potentials. Scientific Reports, 2015, 5, 16057.	3.3	66
122	Metagenomics Reveals Pervasive Bacterial Populations and Reduced Community Diversity across the Alaska Tundra Ecosystem. Frontiers in Microbiology, 2016, 7, 579.	3.5	66
123	Coexistence patterns of soil methanogens are closely tied to methane generation and community assembly in rice paddies. Microbiome, 2021, 9, 20.	11.1	66
124	From lithotroph- to organotroph-dominant: directional shift of microbial community in sulphidic tailings during phytostabilization. Scientific Reports, 2015, 5, 12978.	3.3	64
125	Interconnection of Key Microbial Functional Genes for Enhanced Benzo[<i>a</i>]pyrene Biodegradation in Sediments by Microbial Electrochemistry. Environmental Science & Technology, 2017, 51, 8519-8529.	10.0	64
126	Mountain biodiversity and ecosystem functions: interplay between geology and contemporary environments. ISME Journal, 2020, 14, 931-944.	9.8	64

#	Article	IF	CITATIONS
127	Erosion of functional independence early in the evolution of a microbial mutualism. Proceedings of the United States of America, 2014, 111, 14822-14827.	7.1	63
128	Alternative strategies of nutrient acquisition and energy conservation map to the biogeography of marine ammonia-oxidizing archaea. ISME Journal, 2020, 14, 2595-2609.	9.8	62
129	Methods for estimating temperature sensitivity of soil organic matter based on incubation data: A comparative evaluation. Soil Biology and Biochemistry, 2015, 80, 127-135.	8.8	61
130	Analysis of the functional gene structure and metabolic potential of microbial community in high arsenic groundwater. Water Research, 2017, 123, 268-276.	11.3	61
131	Disentangling direct from indirect relationships in association networks. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	61
132	Contrasting responses of heterotrophic and autotrophic respiration to experimental warming in a winter annualâ€dominated prairie. Global Change Biology, 2013, 19, 3553-3564.	9.5	60
133	Century long fertilization reduces stochasticity controlling grassland microbial community succession. Soil Biology and Biochemistry, 2020, 151, 108023.	8.8	60
134	Pathogenic and Indigenous Denitrifying Bacteria are Transcriptionally Active and Key Multi-Antibiotic-Resistant Players in Wastewater Treatment Plants. Environmental Science & Technology, 2021, 55, 10862-10874.	10.0	60
135	High Concentrations of the Antibiotic Spiramycin in Wastewater Lead to High Abundance of Ammonia-Oxidizing Archaea in Nitrifying Populations. Environmental Science & Technology, 2015, 49, 9124-9132.	10.0	57
136	Elevated carbon dioxide accelerates the spatial turnover of soil microbial communities. Global Change Biology, 2016, 22, 957-964.	9.5	57
137	Temporal changes in global soil respiration since 1987. Nature Communications, 2021, 12, 403.	12.8	57
138	Embracing mountain microbiome and ecosystem functions under global change. New Phytologist, 2022, 234, 1987-2002.	7.3	57
139	Salivary mycobiome dysbiosis and its potential impact on bacteriome shifts and host immunity in oral lichen planus. International Journal of Oral Science, 2019, 11, 13.	8.6	54
140	Functional Gene Array-Based Ultrasensitive and Quantitative Detection of Microbial Populations in Complex Communities. MSystems, 2019, 4, .	3.8	54
141	Microbes and Climate Change: a Research Prospectus for the Future. MBio, 2022, 13, e0080022.	4.1	53
142	An Integrated Study to Analyze Soil Microbial Community Structure and Metabolic Potential in Two Forest Types. PLoS ONE, 2014, 9, e93773.	2.5	52
143	The Diversity and Co-occurrence Patterns of N2-Fixing Communities in a CO2-Enriched Grassland Ecology, 2016, 71, 604-615.	2.8	52
144	High variations of methanogenic microorganisms drive full-scale anaerobic digestion process. Environment International, 2019, 126, 543-551.	10.0	52

#	Article	IF	CITATIONS
145	Microbial metabolic response to winter warming stabilizes soil carbon. Global Change Biology, 2021, 27, 2011-2028.	9.5	50
146	Structure and regulation of the cellulose degradome in Clostridium cellulolyticum. Biotechnology for Biofuels, 2013, 6, 73.	6.2	49
147	Diversity and Structure of Diazotrophic Communities in Mangrove Rhizosphere, Revealed by High-Throughput Sequencing. Frontiers in Microbiology, 2017, 8, 2032.	3.5	49
148	Fungal Communities Respond to Long-Term CO ₂ Elevation by Community Reassembly. Applied and Environmental Microbiology, 2015, 81, 2445-2454.	3.1	48
149	Elevated CO2 shifts the functional structure and metabolic potentials of soil microbial communities in a C4 agroecosystem. Scientific Reports, 2015, 5, 9316.	3.3	48
150	The shifts of sediment microbial community phylogenetic and functional structures during chromium (VI) reduction. Ecotoxicology, 2016, 25, 1759-1770.	2.4	48
151	Low temperature acclimation with electrical stimulation enhance the biocathode functioning stability for antibiotics detoxification. Water Research, 2016, 100, 157-168.	11.3	47
152	Mechanisms of soil bacterial and fungal community assembly differ among and within islands. Environmental Microbiology, 2020, 22, 1559-1571.	3.8	47
153	Winter warming in Alaska accelerates lignin decomposition contributed by Proteobacteria. Microbiome, 2020, 8, 84.	11.1	47
154	Rare prokaryotic sub-communities dominate the complexity of ecological networks and soil multinutrient cycling during long-term secondary succession in China's Loess Plateau. Science of the Total Environment, 2021, 774, 145737.	8.0	47
155	Characterization of NaCl tolerance in <i>Desulfovibrio vulgaris</i> Hildenborough through experimental evolution. ISME Journal, 2013, 7, 1790-1802.	9.8	46
156	Fine-tuning key parameters of an integrated reactor system for the simultaneous removal of COD, sulfate and ammonium and elemental sulfur reclamation. Journal of Hazardous Materials, 2014, 269, 56-67.	12.4	46
157	Diverse metabolic and stress-tolerance pathways in chasmoendolithic and soil communities of Miers Valley, McMurdo Dry Valleys, Antarctica. Polar Biology, 2015, 38, 433-443.	1.2	46
158	Warming Alters Expressions of Microbial Functional Genes Important to Ecosystem Functioning. Frontiers in Microbiology, 2016, 7, 668.	3.5	46
159	Biogeochemistry drives diversity in the prokaryotes, fungi, and invertebrates of a Panama forest. Ecology, 2017, 98, 2019-2028.	3.2	46
160	Fire affects the taxonomic and functional composition of soil microbial communities, with cascading effects on grassland ecosystem functioning. Global Change Biology, 2020, 26, 431-442.	9.5	45
161	Microbial functional traits are sensitive indicators of mild disturbance by lamb grazing. ISME Journal, 2019, 13, 1370-1373.	9.8	44
162	Development of a CRISPR/Cas9n-based tool for metabolic engineering of Pseudomonas putida for ferulic acid-to-polyhydroxyalkanoate bioconversion. Communications Biology, 2020, 3, 98.	4.4	44

#	Article	IF	CITATIONS
163	Annual Removal of Aboveground Plant Biomass Alters Soil Microbial Responses to Warming. MBio, 2016, 7, .	4.1	43
164	Microbial Community Functional Structures in Wastewater Treatment Plants as Characterized by GeoChip. PLoS ONE, 2014, 9, e93422.	2.5	43
165	Agricultural intensification and the functional capacity of soil microbes on smallholder African farms. Journal of Applied Ecology, 2015, 52, 744-752.	4.0	42
166	The spatial scale dependence of diazotrophic and bacterial community assembly in paddy soil. Global Ecology and Biogeography, 2019, 28, 1093-1105.	5.8	42
167	Linkages between microbial functional potential and wastewater constituents in large-scale membrane bioreactors for municipal wastewater treatment. Water Research, 2014, 56, 162-171.	11.3	41
168	Functional Gene Composition, Diversity and Redundancy in Microbial Stream Biofilm Communities. PLoS ONE, 2015, 10, e0123179.	2.5	41
169	Multiple antibiotic resistance genes distribution in ten large-scale membrane bioreactors for municipal wastewater treatment. Bioresource Technology, 2016, 222, 100-106.	9.6	41
170	Development and applications of functional gene microarrays in the analysis of the functional diversity, composition, and structure of microbial communities. Frontiers of Environmental Science and Engineering in China, 2011, 5, 1-20.	0.8	40
171	Bacterial community and arsenic functional genes diversity in arsenic contaminated soils from different geographic locations. PLoS ONE, 2017, 12, e0176696.	2.5	40
172	Production of Nitrous Oxide from Nitrite in Stable Type II Methanotrophic Enrichments. Environmental Science & Technology, 2015, 49, 10969-10975.	10.0	39
173	Dramatic Increases of Soil Microbial Functional Gene Diversity at the Treeline Ecotone of Changbai Mountain. Frontiers in Microbiology, 2016, 7, 1184.	3.5	38
174	Zonal Soil Type Determines Soil Microbial Responses to Maize Cropping and Fertilization. MSystems, 2016, 1, .	3.8	38
175	Contradictory effects of silver nanoparticles on activated sludge wastewater treatment. Journal of Hazardous Materials, 2018, 341, 448-456.	12.4	38
176	Ageratina adenophora invasions are associated with microbially mediated differences in biogeochemical cycles. Science of the Total Environment, 2019, 677, 47-56.	8.0	38
177	Precipitation balances deterministic and stochastic processes of bacterial community assembly in grassland soils. Soil Biology and Biochemistry, 2022, 168, 108635.	8.8	38
178	The effects of silver nanoparticles on intact wastewater biofilms. Frontiers in Microbiology, 2015, 6, 680.	3.5	37
179	Long-term experimental warming decreased labile soil organic carbon in a tallgrass prairie. Plant and Soil, 2012, 361, 307-315.	3.7	36
180	Enhanced elementary sulfur recovery with sequential sulfate-reducing, denitrifying sulfide-oxidizing processes in a cylindrical-type anaerobic baffled reactor. Bioresource Technology, 2015, 192, 478-485.	9.6	36

#	Article	IF	CITATIONS
181	Toward a theory for diversity gradients: the abundance–adaptation hypothesis. Ecography, 2018, 41, 255-264.	4.5	36
182	NifH-Harboring Bacterial Community Composition across an Alaskan Permafrost Thaw Gradient. Frontiers in Microbiology, 2016, 7, 1894.	3.5	35
183	Palladized cells as suspension catalyst and electrochemical catalyst for reductively degrading aromatics contaminants: Roles of Pd size and distribution. Water Research, 2017, 125, 288-297.	11.3	34
184	Continental scale structuring of forest and soil diversity via functional traits. Nature Ecology and Evolution, 2019, 3, 1298-1308.	7.8	34
185	Long-term elevated CO2 shifts composition of soil microbial communities in a Californian annual grassland, reducing growth and N utilization potentials. Science of the Total Environment, 2019, 652, 1474-1481.	8.0	34
186	Biogeography and Assembly of Microbial Communities in Wastewater Treatment Plants in China. Environmental Science & Technology, 2020, 54, 5884-5892.	10.0	34
187	Stimulation of soil respiration by elevated CO ₂ is enhanced under nitrogen limitation in a decade-long grassland study. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33317-33324.	7.1	34
188	Alpine soil carbon is vulnerable to rapid microbial decomposition under climate cooling. ISME Journal, 2017, 11, 2102-2111.	9.8	33
189	Soil microbial beta-diversity is linked with compositional variation in aboveground plant biomass in a semi-arid grassland. Plant and Soil, 2018, 423, 465-480.	3.7	33
190	Rhizosphere Carbon Turnover from Cradle to Grave: The Role of Microbe–Plant Interactions. Rhizosphere Biology, 2021, , 51-73.	0.6	33
191	Functional Characterization of Crp/Fnr-Type Global Transcriptional Regulators in Desulfovibrio vulgaris Hildenborough. Applied and Environmental Microbiology, 2012, 78, 1168-1177.	3.1	32
192	An extracytoplasmic function sigma factor-dependent periplasmic glutathione peroxidase is involved in oxidative stress response of Shewanella oneidensis. BMC Microbiology, 2015, 15, 34.	3.3	31
193	Divergent Responses of Forest Soil Microbial Communities under Elevated CO 2 in Different Depths of Upper Soil Layers. Applied and Environmental Microbiology, 2018, 84, .	3.1	31
194	Functional Traits Resolve Mechanisms Governing the Assembly and Distribution of Nitrogen-Cycling Microbial Communities in the Global Ocean. MBio, 2022, 13, e0383221.	4.1	31
195	Soil enzymes as indicators of soil function: A step toward greater realism in microbial ecological modeling. Global Change Biology, 2022, 28, 1935-1950.	9.5	31
196	Functional diversity and redundancy across fish gut, sediment and water bacterial communities. Environmental Microbiology, 2017, 19, 3268-3282.	3.8	30
197	Temperature drives local contributions to beta diversity in mountain streams: Stochastic and deterministic processes. Global Ecology and Biogeography, 2020, 29, 420-432.	5.8	30
198	Soil Biogeochemical Cycle Couplings Inferred from a Function-Taxon Network. Research, 2021, 2021, 7102769.	5.7	30

#	Article	IF	CITATIONS
199	Phylogenetic and Functional Diversity of Microbial Communities Associated with Subsurface Sediments of the Sonora Margin, Guaymas Basin. PLoS ONE, 2014, 9, e104427.	2.5	29
200	Electroactive Biofilm Serving as the Green Synthesizer and Stabilizer for <i>in Situ</i> Fabricating 3D Nanopalladium Network: An Efficient Electrocatalyst. ACS Sustainable Chemistry and Engineering, 2016, 4, 5392-5397.	6.7	29
201	Environmental antibiotics drives the genetic functions of resistome dynamics. Environment International, 2020, 135, 105398.	10.0	29
202	Climate mediates continental scale patterns of stream microbial functional diversity. Microbiome, 2020, 8, 92.	11.1	28
203	The unseen world: environmental microbial sequencing and identification methods for ecologists. Frontiers in Ecology and the Environment, 2014, 12, 224-231.	4.0	27
204	Modeling the processes of soil moisture in regulating microbial and carbon-nitrogen cycling. Journal of Hydrology, 2020, 585, 124777.	5.4	27
205	Soil pH exerts stronger impacts than vegetation type and plant diversity on soil bacterial community composition in subtropical broad-leaved forests. Plant and Soil, 2020, 450, 273-286.	3.7	27
206	Planting increases the abundance and structure complexity of soil core functional genes relevant to carbon and nitrogen cycling. Scientific Reports, 2015, 5, 14345.	3.3	26
207	Farm management, not soil microbial diversity, controls nutrient loss from smallholder tropical agriculture. Frontiers in Microbiology, 2015, 6, 90.	3.5	26
208	Distance-Decay Relationship for Biological Wastewater Treatment Plants. Applied and Environmental Microbiology, 2016, 82, 4860-4866.	3.1	26
209	Anaerobic Disposal of Arsenic-Bearing Wastes Results in Low Microbially Mediated Arsenic Volatilization. Environmental Science & Technology, 2016, 50, 10951-10959.	10.0	26
210	Microbial Community and Functional Gene Changes in Arctic Tundra Soils in a Microcosm Warming Experiment. Frontiers in Microbiology, 2017, 8, 1741.	3.5	26
211	Stochasticity in microbiology: managing unpredictability to reach the Sustainable Development Goals. Microbial Biotechnology, 2020, 13, 829-843.	4.2	26
212	Improvement of cellulose catabolism in Clostridium cellulolyticum by sporulation abolishment and carbon alleviation. Biotechnology for Biofuels, 2014, 7, 25.	6.2	25
213	A comprehensive insight into functional profiles of free-living microbial community responses to a toxic Akashiwo sanguinea bloom. Scientific Reports, 2016, 6, 34645.	3.3	25
214	Functional Gene Diversity and Metabolic Potential of the Microbial Community in an Estuary-Shelf Environment. Frontiers in Microbiology, 2017, 8, 1153.	3.5	25
215	Excessive nitrogen addition accelerates N assimilation and P utilization by enhancing organic carbon decomposition in a Tibetan alpine steppe. Science of the Total Environment, 2021, 764, 142848.	8.0	25
216	Dynamic Succession of Groundwater Functional Microbial Communities in Response to Emulsified Vegetable Oil Amendment during Sustained <i>In Situ</i> U(VI) Reduction. Applied and Environmental Microbiology, 2015, 81, 4164-4172.	3.1	24

#	Article	IF	CITATIONS
217	Rapid selective sweep of pre-existing polymorphisms and slow fixation of new mutations in experimental evolution of <i>Desulfovibrio vulgaris</i> . ISME Journal, 2015, 9, 2360-2372.	9.8	24
218	Functional activity and functional gene diversity of a Cu-contaminated soil remediated by aided phytostabilization using compost, dolomitic limestone and a mixed tree stand. Environmental Pollution, 2018, 242, 229-238.	7.5	24
219	Spatial scaling of forest soil microbial communities across a temperature gradient. Environmental Microbiology, 2018, 20, 3504-3513.	3.8	24
220	The microbial network property as a bio-indicator of antibiotic transmission in the environment. Science of the Total Environment, 2021, 758, 143712.	8.0	24
221	Taxonomic and Functional Analyses of the Supragingival Microbiome from Caries-Affected and Caries-Free Hosts. Microbial Ecology, 2018, 75, 543-554.	2.8	23
222	Hybridization of Environmental Microbial Community Nucleic Acids by GeoChip. Methods in Molecular Biology, 2016, 1399, 183-196.	0.9	23
223	The microbially mediated soil organic carbon loss under degenerative succession in an alpine meadow. Molecular Ecology, 2017, 26, 3676-3686.	3.9	22
224	Dynamic Succession of Groundwater Sulfate-Reducing Communities during Prolonged Reduction of Uranium in a Contaminated Aquifer. Environmental Science & Technology, 2017, 51, 3609-3620.	10.0	22
225	The Biogeographic Pattern of Microbial Functional Genes along an Altitudinal Gradient of the Tibetan Pasture. Frontiers in Microbiology, 2017, 8, 976.	3.5	22
226	Taxonomic decomposition of the latitudinal gradient in species diversity of North American floras. Journal of Biogeography, 2018, 45, 418-428.	3.0	22
227	Biotic responses buffer warmingâ€induced soil organic carbon loss in Arctic tundra. Global Change Biology, 2018, 24, 4946-4959.	9.5	21
228	Successional change in species composition alters climate sensitivity of grassland productivity. Global Change Biology, 2018, 24, 4993-5003.	9.5	21
229	Theory of microbial coexistence in promoting soil–plant ecosystem health. Biology and Fertility of Soils, 2021, 57, 897-911.	4.3	21
230	Microbial functional genes commonly respond to elevated carbon dioxide. Environment International, 2020, 144, 106068.	10.0	20
231	Dissimilatory Nitrate Reduction to Ammonium (DNRA) and Denitrification Pathways Are Leveraged by Cyclic AMP Receptor Protein (CRP) Paralogues Based on Electron Donor/Acceptor Limitation in Shewanella loihica PV-4. Applied and Environmental Microbiology, 2021, 87, .	3.1	20
232	Denitrifying and diazotrophic community responses to artificial warming in permafrost and tallgrass prairie soils. Frontiers in Microbiology, 2015, 6, 746.	3.5	19
233	A Slow-Release Substrate Stimulates Groundwater Microbial Communities for Long-Term in Situ Cr(VI) Reduction. Environmental Science & Technology, 2015, 49, 12922-12931.	10.0	19
234	Cas9 Nickase-Assisted RNA Repression Enables Stable and Efficient Manipulation of Essential Metabolic Genes in Clostridium cellulolyticum. Frontiers in Microbiology, 2017, 8, 1744.	3.5	19

Јігнонс Zhou

#	Article	IF	CITATIONS
235	Temperature determines the diversity and structure of N ₂ Oâ€reducing microbial assemblages. Functional Ecology, 2018, 32, 1867-1878.	3.6	19
236	GeoChip-based analysis of the microbial community functional structures in simultaneous desulfurization and denitrification process. Journal of Environmental Sciences, 2014, 26, 1375-1382.	6.1	18
237	Contrasting microbial functional genes in two distinct saline-alkali and slightly acidic oil-contaminated sites. Science of the Total Environment, 2014, 487, 272-278.	8.0	18
238	Precise promoter integration improves cellulose bioconversion and thermotolerance in Clostridium cellulolyticum. Metabolic Engineering, 2020, 60, 110-118.	7.0	18
239	Development of HuMiChip for Functional Profiling of Human Microbiomes. PLoS ONE, 2014, 9, e90546.	2.5	18
240	Effects of microcystin-LR on bacterial and fungal functional genes profile in rat gut. Toxicon, 2015, 96, 50-56.	1.6	17
241	Genomic dynamics of full-scale temperature-phased anaerobic digestion treating waste activated sludge: Focusing on temperature differentiation. Waste Management, 2019, 87, 621-628.	7.4	17
242	A latitudinal gradient of microbial βâ€diversity in continental paddy soils. Global Ecology and Biogeography, 2021, 30, 909-919.	5.8	17
243	Efficient extracellular laccase secretion <i>via</i> bio-designed secretory apparatuses to enhance bacterial utilization of recalcitrant lignin. Green Chemistry, 2021, 23, 2079-2094.	9.0	17
244	Saliva Microbiota Carry Caries-Specific Functional Gene Signatures. PLoS ONE, 2014, 9, e76458.	2.5	16
245	Redox potential and microbial functional gene diversity in wetland sediments under simulated warming conditions: implications for phosphorus mobilization. Hydrobiologia, 2015, 743, 221-235.	2.0	16
246	Diversity and interactions of microbial functional genes under differing environmental conditions: insights from a membrane bioreactor and an oxidation ditch. Scientific Reports, 2016, 6, 18509.	3.3	16
247	Evaluating the lingering effect of livestock grazing on functional potentials of microbial communities in Tibetan grassland soils. Plant and Soil, 2016, 407, 385-399.	3.7	16
248	Microscale heterogeneity of the soil nitrogen cycling microbial functional structure and potential metabolism. Environmental Microbiology, 2021, 23, 1199-1209.	3.8	16
249	Winter warming rapidly increases carbon degradation capacities of fungal communities in tundra soil: Potential consequences on carbon stability. Molecular Ecology, 2021, 30, 926-937.	3.9	16
250	Strain/Species-Specific Probe Design for Microbial Identification Microarrays. Applied and Environmental Microbiology, 2013, 79, 5085-5088.	3.1	15
251	GeoChip-based analysis of microbial community of a combined nitritation-anammox reactor treating anaerobic digestion supernatant. Water Research, 2014, 67, 345-354.	11.3	15
252	The Composition and Spatial Patterns of Bacterial Virulence Factors and Antibiotic Resistance Genes in 19 Wastewater Treatment Plants. PLoS ONE, 2016, 11, e0167422.	2.5	15

#	Article	IF	CITATIONS
253	Soil bacterial endemism and potential functional redundancy in natural broadleaf forest along a latitudinal gradient. Scientific Reports, 2016, 6, 28819.	3.3	15
254	Temporal Dynamics of In-Field Bioreactor Populations Reflect the Groundwater System and Respond Predictably to Perturbation. Environmental Science & amp; Technology, 2017, 51, 2879-2889.	10.0	15
255	Antibiotic resistance genes in manure-amended paddy soils across eastern China: Occurrence and influencing factors. Frontiers of Environmental Science and Engineering, 2022, 16, 1.	6.0	15
256	Predictive microbial ecology. Microbial Biotechnology, 2009, 2, 154-156.	4.2	14
257	RpoN (σ ⁵⁴) Is Required for Floc Formation but Not for Extracellular Polysaccharide Biosynthesis in a Floc-Forming Aquincola tertiaricarbonis Strain. Applied and Environmental Microbiology, 2017, 83, .	3.1	14
258	Divergent taxonomic and functional responses of microbial communities to field simulation of aeolian soil erosion and deposition. Molecular Ecology, 2017, 26, 4186-4196.	3.9	14
259	Links among extracellular enzymes, lignin degradation and cell growth establish the models to identify marine ligninâ€utilizing bacteria. Environmental Microbiology, 2021, 23, 160-173.	3.8	14
260	Functional roles of CymA and NapC in reduction of nitrate and nitrite by Shewanella putrefaciens W3-18-1. Microbiology (United Kingdom), 2016, 162, 930-941.	1.8	14
261	Microbial communities and arsenic biogeochemistry at the outflow of an alkaline sulfide-rich hot spring. Scientific Reports, 2016, 6, 25262.	3.3	13
262	Transcriptional response of <i>Desulfatibacillum alkenivorans</i> AK-01 to growth on alkanes: insights from RT-qPCR and microarray analyses. FEMS Microbiology Ecology, 2016, 92, fiw062.	2.7	13
263	Large-scale 16S gene assembly using metagenomics shotgun sequences. Bioinformatics, 2017, 33, 1447-1456.	4.1	13
264	Key Metabolites and Mechanistic Changes for Salt Tolerance in an Experimentally Evolved Sulfate-Reducing Bacterium, <i>Desulfovibrio vulgaris</i> . MBio, 2017, 8, .	4.1	13
265	A comparative proteomic analysis of Desulfovibrio vulgaris Hildenborough in response to the antimicrobial agent free nitrous acid. Science of the Total Environment, 2019, 672, 625-633.	8.0	13
266	Dissimilar responses of fungal and bacterial communities to soil transplantation simulating abrupt climate changes. Molecular Ecology, 2019, 28, 1842-1856.	3.9	13
267	Artificial reforestation produces less diverse soil nitrogen ycling genes than natural restoration. Ecosphere, 2019, 10, e02562.	2.2	13
268	Changes of microbial functional capacities in the rhizosphere contribute to aluminum tolerance by genotype-specific soybeans in acid soils. Biology and Fertility of Soils, 2020, 56, 771-783.	4.3	13
269	Patterns of microbial arsenic detoxification genes in low-arsenic continental paddy soils. Environmental Research, 2021, 201, 111584.	7.5	13
270	The Shifts of Diazotrophic Communities in Spring and Summer Associated with Coral Galaxea astreata, Pavona decussata, and Porites lutea. Frontiers in Microbiology, 2016, 7, 1870.	3.5	12

#	Article	IF	CITATIONS
271	Comment on $\hat{a} \in \hat{c}$ The whole-soil carbon flux in response to warming $\hat{a} \in \hat{c}$ Science, 2018, 359, .	12.6	12
272	Microbial responses to inorganic nutrient amendment overridden by warming: Consequences on soil carbon stability. Environmental Microbiology, 2018, 20, 2509-2522.	3.8	12
273	Long-term warming in a Mediterranean-type grassland affects soil bacterial functional potential but not bacterial taxonomic composition. Npj Biofilms and Microbiomes, 2021, 7, 17.	6.4	12
274	Mechanism Across Scales: A Holistic Modeling Framework Integrating Laboratory and Field Studies for Microbial Ecology. Frontiers in Microbiology, 2021, 12, 642422.	3.5	12
275	Direct cell extraction from fresh and stored soil samples: Impact on microbial viability and community compositions. Soil Biology and Biochemistry, 2021, 155, 108178.	8.8	12
276	Temporal Changes of Virus-Like Particle Abundance and Metagenomic Comparison of Viral Communities in Cropland and Prairie Soils. MSphere, 2021, 6, e0116020.	2.9	12
277	Warming-driven migration of core microbiota indicates soil property changes at continental scale. Science Bulletin, 2021, 66, 2025-2035.	9.0	12
278	Effects of Substrate Addition on Soil Respiratory Carbon Release Under Long-Term Warming and Clipping in a Tallgrass Prairie. PLoS ONE, 2014, 9, e114203.	2.5	12
279	Permafrost thaw with warming reduces microbial metabolic capacities in subsurface soils. Molecular Ecology, 2022, 31, 1403-1415.	3.9	12
280	Characterization of Co(III) EDTA-Reducing Bacteria in Metal- and Radionuclide-Contaminated Groundwater. Geomicrobiology Journal, 2010, 27, 93-100.	2.0	11
281	Functional Associations and Resilience in Microbial Communities. Microorganisms, 2020, 8, 951.	3.6	11
282	Succession of microbial functional communities in response to a pilot-scale ethanol-blended fuel release throughout the plume life cycle. Environmental Pollution, 2015, 198, 154-160.	7.5	10
283	Differential Sensitivity of Wetland-Derived Nitrogen Cycling Microorganisms to Copper Nanoparticles. ACS Sustainable Chemistry and Engineering, 2018, 6, 11642-11652.	6.7	10
284	Ocean Acidification Regulates the Activity, Community Structure, and Functional Potential of Heterotrophic Bacterioplankton in an Oligotrophic Gyre. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 1001-1017.	3.0	10
285	Experimental evolution reveals nitrate tolerance mechanisms in <i>Desulfovibrio vulgaris</i> . ISME Journal, 2020, 14, 2862-2876.	9.8	10
286	Soil Microbial Community Assembly and Interactions Are Constrained by Nitrogen and Phosphorus in Broadleaf Forests of Southern China. Forests, 2020, 11, 285.	2.1	10
287	Functional structures of soil microbial community relate to contrasting N2O emission patterns from a highly acidified forest. Science of the Total Environment, 2020, 725, 138504.	8.0	10
288	Microbial Functional Responses Explain Alpine Soil Carbon Fluxes under Future Climate Scenarios. MBio, 2021, 12, .	4.1	10

#	Article	IF	CITATIONS
289	The call for regional design code from the regional discrepancy of microbial communities in activated sludge. Environmental Pollution, 2021, 273, 116487.	7.5	10
290	Variations of Soil Microbial Community Structures Beneath Broadleaved Forest Trees in Temperate and Subtropical Climate Zones. Frontiers in Microbiology, 2017, 8, 200.	3.5	9
291	Edaphic variables are better indicators of soil microbial functional structure than plant-related ones in subtropical broad-leaved forests. Science of the Total Environment, 2021, 773, 145630.	8.0	9
292	Differential gene content and gene expression for bacterial evolution and speciation of Shewanella in terms of biosynthesis of heme and heme-requiring proteins. BMC Microbiology, 2019, 19, 173.	3.3	8
293	Macroecological distributions of gene variants highlight the functional organization of soil microbial systems. ISME Journal, 2022, 16, 726-737.	9.8	8
294	Functional microbial community structures and chemical properties indicated mechanisms and potential risks of urban river eco-remediation. Science of the Total Environment, 2022, 803, 149868.	8.0	8
295	Environmental Water and Sediment Microbial Communities Shape Intestine Microbiota for Host Health: The Central Dogma in an Anthropogenic Aquaculture Ecosystem. Frontiers in Microbiology, 2021, 12, 772149.	3.5	8
296	Microbial responses to southward and northward Cambisol soil transplant. MicrobiologyOpen, 2015, 4, 931-940.	3.0	7
297	Nascent Genomic Evolution and Allopatric Speciation of Myroides profundi D25 in Its Transition from Land to Ocean. MBio, 2016, 7, e01946-15.	4.1	7
298	Adaptive Evolution of Sphingobium hydrophobicum C1T in Electronic Waste Contaminated River Sediment. Frontiers in Microbiology, 2019, 10, 2263.	3.5	7
299	Phytomanagement Reduces Metal Availability and Microbial Metal Resistance in a Metal Contaminated Soil. Frontiers in Microbiology, 2020, 11, 1899.	3.5	7
300	Multilevel Nitrogen Additions Alter Chemical Composition and Turnover of the Labile Fraction Soil Organic Matter via Effects on Vegetation and Microorganisms. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005316.	3.0	7
301	Microbial Community Dynamics and Activity Link to Indigo Production from Indole in Bioaugmented Activated Sludge Systems. PLoS ONE, 2015, 10, e0138455.	2.5	7
302	Elucidation of the methanogenic potential from coalbed microbial communities amended with volatile fatty acids. FEMS Microbiology Ecology, 2017, 93, .	2.7	6
303	Stabilities of soil organic carbon and carbon cycling genes are higher in natural secondary forests than in artificial plantations in southern China. Land Degradation and Development, 2020, 31, 2986-2995.	3.9	6
304	Targeted assemblies of <i>cas1</i> suggest CRISPR-Cas's response to soil warming. ISME Journal, 2020, 14, 1651-1662.	9.8	6
305	Synergistic epistasis enhances the co-operativity of mutualistic interspecies interactions. ISME Journal, 2021, 15, 2233-2247.	9.8	6
306	Warming exacerbates the impact of nutrient enrichment on microbial functional potentials important to the nutrient cycling in shallow lake mesocosms. Limnology and Oceanography, 2021, 66, 2481-2495.	3.1	6

#	Article	IF	CITATIONS
307	Dissolved organic matter (DOM) quality drives biogeographic patterns of soil bacterial communities and their association networks in semi-arid regions. FEMS Microbiology Ecology, 2021, 97, .	2.7	6
308	Sustained Ability of a Natural Microbial Community to Remove Nitrate from Groundwater. Ground Water, 2022, 60, 99-111.	1.3	6
309	GeoChip as a metagenomics tool to analyze the microbial gene diversity along an elevation gradient. Genomics Data, 2014, 2, 132-134.	1.3	5
310	Differential Regulation of the Two Ferrochelatase Paralogues in Shewanella loihica PV-4 in Response to Environmental Stresses. Applied and Environmental Microbiology, 2016, 82, 5077-5088.	3.1	5
311	Antibiotic resistome mostly relates to bacterial taxonomy along a suburban transmission chain. Frontiers of Environmental Science and Engineering, 2022, 16, 1.	6.0	5
312	Aboveground and Belowground Plant Traits Explain Latitudinal Patterns in Topsoil Fungal Communities From Tropical to Cold Temperate Forests. Frontiers in Microbiology, 2021, 12, 633751.	3.5	5
313	VB ₁₂ Path for Accurate Metagenomic Profiling of Microbially Driven Cobalamin Synthesis Pathways. MSystems, 2021, 6, e0049721.	3.8	5
314	Correspondence: Reply to â€~Analytical flaws in a continental-scale forest soil microbial diversity study'. Nature Communications, 2017, 8, 15583.	12.8	4
315	Conversion of marginal land into switchgrass conditionally accrues soil carbon but reduces methane consumption. ISME Journal, 2022, 16, 10-25.	9.8	4
316	Microbial Community Structure and Ecological Networks during Simulation of Diatom Sinking. Microorganisms, 2022, 10, 639.	3.6	4
317	Temporal Dynamics of Bacterial Communities along a Gradient of Disturbance in a U.S. Southern Plains Agroecosystem. MBio, 2022, 13, e0382921.	4.1	4
318	GeoChip profiling of microbial community in response to global changes simulated by soil transplant and cropping. Genomics Data, 2014, 2, 166-169.	1.3	3
319	Complete Genome Sequence of Desulfovibrio desulfuricans IC1, a Sulfonate-Respiring Anaerobe. Microbiology Resource Announcements, 2019, 8, .	0.6	3
320	Development of a Markerless Deletion Mutagenesis System in Nitrate-Reducing Bacterium Rhodanobacter denitrificans. Applied and Environmental Microbiology, 2022, 88, .	3.1	3
321	Thermal disruption of soil bacterial assemblages decreases diversity and assemblage similarity. Ecosphere, 2019, 10, e02598.	2.2	2
322	High historical variability weakens the effects of current climate differentiation on microbial community dissimilarity and assembly. Global Change Biology, 2021, 27, 5963-5975.	9.5	2
323	Origin of eukaryotes: What can be learned from the first successfully isolated Asgard archaeon. Faculty Reviews, 2022, 11, 3.	3.9	2
324	Behaviors of Homologous Antibiotic Resistance Genes in a Cephalosporin WWTP, Subsequent WWTP and the Receiving River. Frontiers in Environmental Science, 2021, 9, .	3.3	2

#	Article	IF	CITATIONS
325	Improving a Biogeochemical Model to Simulate Microbialâ€mediated Carbon Dynamics in Agricultural ecosystems. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002752.	3.8	1
326	Differential Sensitivity of Wetland-Derived Nitrogen Cycling Microorganisms to Copper Nanoparticles. ACS Sustainable Chemistry and Engineering, 2018, 6, 11642-11652.	6.7	1
327	Long-Term Effects of Soil Remediation with Willow Short Rotation Coppice on Biogeographic Pattern of Microbial Functional Genes. Microorganisms, 2022, 10, 140.	3.6	1
328	In vivo Functional Characterization of Hydrophilic X2 Modules in the Cellulosomal Scaffolding Protein. Frontiers in Microbiology, 2022, 13, 861549.	3.5	1
329	Functional profiles of soil microbial communities in the alpine and temperate grasslands of China. , 2022, 1, 3-13.		1
330	Monitoring Microbial Activity with GeoChip. , 0, , 261-P1.		0
331	Genetic Basis of Chromate Adaptation and the Role of the Pre-existing Genetic Divergence during an Experimental Evolution Study with Desulfovibrio vulgaris Populations. MSystems, 2021, 6, e0049321.	3.8	0
332	<i>>mLife</i> : Your journal for cuttingâ€edge research in all microbiological disciplines. , 2022, 1, 1-2.		0
333	Cas9 Nickase-Based Genome Editing in Clostridium cellulolyticum. Methods in Molecular Biology, 2022, 2479, 227-243.	0.9	0