List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8145099/publications.pdf Version: 2024-02-01

		5261	9854
239	22,218	83	141
papers	citations	h-index	g-index
	- <i>1</i> -		
242	242	242	6082
all docs	docs citations	times ranked	citing authors

IAMES W HEAD

#	Article	IF	CITATIONS
1	Planetary volcanology: progress, problems, and opportunities. Bulletin of Volcanology, 2022, 84, 1.	1.1	3
2	Noachian Proglacial Paleolakes on Mars: Regionally Recurrent Fluvial Activity and Lake Formation within Closed-source Drainage Basin Craters. Planetary Science Journal, 2022, 3, 38.	1.5	5
3	Sulfides in Mercury's Mantle: Implications for Mercury's Interior as Interpreted From Moment of Inertia. Geophysical Research Letters, 2022, 49, .	1.5	3
4	Young lunar mare basalts in the Chang'e-5 sample return region, northern Oceanus Procellarum. Earth and Planetary Science Letters, 2021, 555, 116702.	1.8	88
5	Patterns of late Amazonian deglaciation from the distribution of martian paraglacial features. Icarus, 2021, 355, 114117.	1.1	3
6	In search of the RNA world on Mars. Geobiology, 2021, 19, 307-321.	1.1	9
7	A Noachian Proglacial Paleolake on Mars: Fluvial Activity and Lake Formation within a Closed-source Drainage Basin Crater and Implications for Early Mars Climate. Planetary Science Journal, 2021, 2, 52.	1.5	14
8	A coupled model of episodic warming, oxidation and geochemical transitions on early Mars. Nature Geoscience, 2021, 14, 127-132.	5.4	64
9	Ina Lunar Irregular Mare Patch Mission Concepts: Distinguishing between Ancient and Modern Volcanism Models. Planetary Science Journal, 2021, 2, 66.	1.5	5
10	A Volcanic Ash Layer in the Nördlinger Ries Impact Structure (Miocene, Germany): Indication of Crater Fill Geometry and Origins of Longâ€īerm Crater Floor Sagging. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006764.	1.5	10
11	Formation and dispersal of pyroclasts on the Moon: Indicators of lunar magma volatile contents. Journal of Volcanology and Geothermal Research, 2021, 413, 107217.	0.8	14
12	China's Chang'e-5 landing site: Geology, stratigraphy, and provenance of materials. Earth and Planetary Science Letters, 2021, 561, 116855.	1.8	99
13	The Long Sinuous Rille System in Northern Oceanus Procellarum and Its Relation to the Chang'eâ€5 Returned Samples. Geophysical Research Letters, 2021, 48, e2021GL092663.	1.5	22
14	Venus, an Astrobiology Target. Astrobiology, 2021, 21, 1163-1185.	1.5	38
15	Degassing of volcanic extrusives on Mercury: Potential contributions to transient atmospheres and buried polar deposits. Earth and Planetary Science Letters, 2021, 564, 116907.	1.8	6
16	The Lunar Mare Ringâ€Moat Dome Structure (RMDS) Age Conundrum: Contemporaneous With Imbrianâ€Aged Host Lava Flows or Emplaced in the Copernican?. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006880.	1.5	9
17	Mare Domes in Mare Tranquillitatis: Identification, Characterization, and Implications for Their Origin. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006888.	1.5	6

18 Boulders on Mercury. Icarus, 2021, 369, 114628.

1.1 3

#	Article	IF	CITATIONS
19	Copernicanâ€Aged (<200ÂMa) Impact Ejecta at the Chang'eâ€5 Landing Site: Statistical Evidence From Crater Morphology, Morphometry, and Degradation Models. Geophysical Research Letters, 2021, 48, e2021GL095341.	1.5	24
20	Age and composition of young basalts on the Moon, measured from samples returned by Chang'e-5. Science, 2021, 374, 887-890.	6.0	148
21	Geological Characteristics and Targets of High Scientific Interest in the Zhurong Landing Region on Mars. Geophysical Research Letters, 2021, 48, e2021GL094903.	1.5	37
22	The environmental effects of very large bolide impacts on early Mars explored with a hierarchy of numerical models. Icarus, 2020, 335, 113419.	1.1	30
23	Analyzing the ages of south polar craters on the Moon: Implications for the sources and evolution of surface water ice Icarus, 2020, 336, 113455.	1.1	53
24	Magmatic intrusion-related processes in the upper lunar crust: The role of country rock porosity/permeability in magmatic percolation and thermal annealing, and implications for gravity signatures. Planetary and Space Science, 2020, 180, 104765.	0.9	6
25	The regolith properties of the Chang'e-5 landing region and the ground drilling experiments using lunar regolith simulants. Icarus, 2020, 337, 113508.	1.1	34
26	Thermophysical Features of the Rümker Region in Northern Oceanus Procellarum: Insights from CE-2 CELMS Data. Remote Sensing, 2020, 12, 3272.	1.8	10
27	Erosion of lunar surface rocks by impact processes: A synthesis. Planetary and Space Science, 2020, 194, 105105.	0.9	27
28	Rethinking Lunar Mare Basalt Regolith Formation: New Concepts of Lava Flow Protolith and Evolution of Regolith Thickness and Internal Structure. Geophysical Research Letters, 2020, 47, e2020GL088334.	1.5	31
29	Experimental Investigations on the Effects of Dissolved Gases on the Freezing Dynamics of Ocean Worlds. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006528.	1.5	2
30	Stratigraphy of Ice and Ejecta Deposits at the Lunar Poles. Geophysical Research Letters, 2020, 47, e2020GL088920.	1.5	32
31	Volcanically Induced Transient Atmospheres on the Moon: Assessment of Duration, Significance, and Contributions to Polar Volatile Traps. Geophysical Research Letters, 2020, 47, e2020GL089509.	1.5	25
32	Quantitative Characterization of Impact Crater Materials on the Moon: Changes in Topographic Roughness and Thermophysical Properties With Age. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006091.	1.5	9
33	Temperatureâ€Dependent Changes in the Normal Albedo of the Lunar Surface at 1,064Ânm. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006338.	1.5	4
34	Assessing the Roughness Properties of Circumpolar Lunar Craters: Implications for the Timing of Waterâ€ice Delivery to the Moon. Geophysical Research Letters, 2020, 47, e2020GL087782.	1.5	13
35	Lunar Irregular Mare Patches: Classification, Characteristics, Geologic Settings, Updated Catalog, Origin, and Outstanding Questions. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006362.	1.5	18
36	The Cauchy 5 Small, Lowâ€Volume Lunar Shield Volcano: Evidence for Volatile Exsolutionâ€Eruption Patterns and Type 1/Type 2 Hybrid Irregular Mare Patch Formation. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006171.	1.5	11

#	Article	IF	CITATIONS
37	Regolith textures on Mercury: Comparison with the Moon. Icarus, 2020, 351, 113945.	1.1	10
38	Ringâ€Moat Dome Structures (RMDSs) in the Lunar Maria: Statistical, Compositional, and Morphological Characterization and Assessment of Theories of Origin. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE005967.	1.5	13
39	Rainfall on Noachian Mars: Nature, timing, and influence on geologic processes and climate history. Icarus, 2020, 347, 113782.	1.1	18
40	Groundwater Release on Early Mars: Utilizing Models and Proposed Evidence for Groundwater Release to Estimate the Required Climate and Subsurface Water Budget. Geophysical Research Letters, 2020, 47, e2020GL087230.	1.5	5
41	Glaciation on Mercury: Accumulation and flow of ice in permanently shadowed circum-polar crater interiors. Icarus, 2019, 317, 81-93.	1.1	3
42	The volume of water required to carve the martian valley networks: Improved constraints using updated methods. Icarus, 2019, 317, 379-387.	1.1	16
43	Potential Lunar Base on Mons Malapert: Topographic, Geologic and Trafficability Considerations. Solar System Research, 2019, 53, 383-398.	0.3	19
44	Searching for Lunar Horizon Glow With the Lunar Orbiter Laser Altimeter. Journal of Geophysical Research E: Planets, 2019, 124, 2728-2744.	1.5	6
45	Venus as a Laboratory for Exoplanetary Science. Journal of Geophysical Research E: Planets, 2019, 124, 2015-2028.	1.5	59
46	Age constraints of Mercury's polar deposits suggest recent delivery of ice. Earth and Planetary Science Letters, 2019, 520, 26-33.	1.8	19
47	Oceans on Mars: The possibility of a Noachian groundwater-fed ocean in a sub-freezing martian climate. Icarus, 2019, 331, 209-225.	1.1	7
48	Analyses of Lunar Orbiter Laser Altimeter 1,064â€nm Albedo in Permanently Shadowed Regions of Polar Crater Flat Floors: Implications for Surface Water Ice Occurrence and Future In Situ Exploration. Earth and Space Science, 2019, 6, 467-488.	1.1	24
49	Geological Characterization of the Ina Shield Volcano Summit Pit Crater on the Moon: Evidence for Extrusion of Waningâ€Stage Lava Lake Magmatic Foams and Anomalously Young Crater Retention Ages. Journal of Geophysical Research E: Planets, 2019, 124, 1100-1140.	1.5	21
50	A theoretical model for the formation of Ring Moat Dome Structures: Products of second boiling in lunar basaltic lava flows. Journal of Volcanology and Geothermal Research, 2019, 374, 160-180.	0.8	15
51	Areally Extensive Surface Bedrock Exposures on Mars: Many Are Clastic Rocks, Not Lavas. Geophysical Research Letters, 2018, 45, 1767-1777.	1.5	68
52	Transient post-glacial processes on Mars: Geomorphologic evidence for a paraglacial period. Icarus, 2018, 309, 187-206.	1.1	15
53	Mars Climate History: Insights From Impact Crater Wall Slope Statistics. Geophysical Research Letters, 2018, 45, 1751-1758.	1.5	15
54	The Apollo peak-ring impact basin: Insights into the structure and evolution of the South Pole–Aitken basin. Icarus, 2018, 306, 139-149.	1.1	14

#	Article	lF	CITATIONS
55	Constraining the thickness of polar ice deposits on Mercury using the Mercury Laser Altimeter and small craters in permanently shadowed regions. Icarus, 2018, 305, 139-148.	1.1	17
56	Lunar floor-fractured craters: Modes of dike and sill emplacement and implications of gas production and intrusion cooling on surface morphology and structure. Icarus, 2018, 305, 105-122.	1.1	29
57	Geology, tectonism and composition of the northwest Imbrium region. Icarus, 2018, 303, 67-90.	1.1	24
58	Late Noachian Icy Highlands climate model: Exploring the possibility of transient melting and fluvial/lacustrine activity through peak annual and seasonal temperatures. Icarus, 2018, 300, 261-286.	1.1	49
59	The role of substrate characteristics in producing anomalously young crater retention ages in volcanic deposits on the Moon: Morphology, topography, subresolution roughness, and mode of emplacement of the Sosigenes lunar irregular mare patch. Meteoritics and Planetary Science, 2018, 53, 778-812	0.7	30
60	Impact cratering as a cause of climate change, surface alteration, and resurfacing during the early history of Mars. Meteoritics and Planetary Science, 2018, 53, 687-725.	0.7	26
61	Testing landslide and atmosphericâ€effects models for the formation of doubleâ€layered ejecta craters on Mars. Meteoritics and Planetary Science, 2018, 53, 741-777.	0.7	10
62	Early Mars Climate History: Characterizing a "Warm and Wet―Martian Climate With a 3â€D Global Climate Model and Testing Geological Predictions. Geophysical Research Letters, 2018, 45, 10,249.	1.5	22
63	Geologic History of the Northern Portion of the South Poleâ€Aitken Basin on the Moon. Journal of Geophysical Research E: Planets, 2018, 123, 2585-2612.	1.5	36
64	Geology and Scientific Significance of the Rümker Region in Northern Oceanus Procellarum: China's Chang'Eâ€5 Landing Region. Journal of Geophysical Research E: Planets, 2018, 123, 1407-1430.	1.5	92
65	Geological Characteristics of Von Kármán Crater, Northwestern South Poleâ€Aitken Basin: Chang'Eâ€4 Landing Site Region. Journal of Geophysical Research E: Planets, 2018, 123, 1684-1700.	1.5	114
66	Lunar Orientale Impact Basin Secondary Craters: Spatial Distribution, Sizeâ€Frequency Distribution, and Estimation of Fragment Size. Journal of Geophysical Research E: Planets, 2018, 123, 1344-1367.	1.5	18
67	Venus: The Atmosphere, Climate, Surface, Interior and Near-Space Environment of an Earth-Like Planet. Space Science Reviews, 2018, 214, 1.	3.7	63
68	Reexamination of Early Lunar Chronology With GRAIL Data: Terranes, Basins, and Impact Fluxes. Journal of Geophysical Research E: Planets, 2018, 123, 1596-1617.	1.5	25
69	Controls on Lunar Basaltic Volcanic Eruption Structure and Morphology: Gas Release Patterns in Sequential Eruption Phases. Geophysical Research Letters, 2018, 45, 5852-5859.	1.5	44
70	Generation, ascent and eruption of magma on the Moon: New insights into source depths, magma supply, intrusions and effusive/explosive eruptions (Part 1: Theory). Icarus, 2017, 283, 146-175.	1.1	124
71	Generation, ascent and eruption of magma on the Moon: New insights into source depths, magma supply, intrusions and effusive/explosive eruptions (Part 2: Predicted emplacement processes and) Tj ETQq1 1	0.78 4.3 14 r	gBTI#Øverloci
72	Geological mapping of impact melt deposits at lunar complex craters Jackson and Tycho: Morphologic and topographic diversity and relation to the cratering process. Icarus, 2017, 283, 268-281.	1.1	23

#	Article	IF	CITATIONS
73	Transient reducing greenhouse warming on early Mars. Geophysical Research Letters, 2017, 44, 665-671.	1.5	178
74	Salt or ice diapirism origin for the honeycomb terrain in Hellas basin, Mars?: Implications for the early martian climate. Icarus, 2017, 284, 249-263.	1.1	13
75	Thermal stress weathering and the spalling of Antarctic rocks. Journal of Geophysical Research F: Earth Surface, 2017, 122, 3-24.	1.0	49
76	3D modelling of the climatic impact of outflow channel formation events on early Mars. Icarus, 2017, 288, 10-36.	1.1	37
77	Eruption of magmatic foams on the Moon: Formation in the waning stages of dike emplacement events as an explanation of "irregular mare patches― Journal of Volcanology and Geothermal Research, 2017, 335, 113-127.	0.8	49
78	Evidence for stabilization of the ice-cemented cryosphere in earlier martian history: Implications for the current abundance of groundwater at depth on Mars. Icarus, 2017, 288, 120-147.	1.1	28
79	Extensive Amazonianâ€aged fluvial channels on Mars: Evaluating the role of Lyot crater in their formation. Geophysical Research Letters, 2017, 44, 5336-5344.	1.5	9
80	GRAIL gravity observations of the transition from complex crater to peak-ring basin on the Moon: Implications for crustal structure and impact basin formation. Icarus, 2017, 292, 54-73.	1.1	19
81	Ina pit crater on the Moon: Extrusion of waning-stage lava lake magmatic foam results in extremely young crater retention ages. Geology, 2017, 45, 455-458.	2.0	44
82	Model for the origin, ascent, and eruption of lunar picritic magmas. American Mineralogist, 2017, 102, 2045-2053.	0.9	29
83	New evidence for surface water ice in smallâ€scale cold traps and in three large craters at the north polar region of Mercury from the Mercury Laser Altimeter. Geophysical Research Letters, 2017, 44, 9233-9241.	1.5	37
84	Newly Discovered Ringâ€Moat Dome Structures in the Lunar Maria: Possible Origins and Implications. Geophysical Research Letters, 2017, 44, 9216-9224.	1.5	18
85	Basin formation on Mercury: Caloris and the origin of its low-reflectance material. Earth and Planetary Science Letters, 2017, 474, 427-435.	1.8	9
86	Low-amplitude topographic features and textures on the Moon: Initial results from detrended Lunar Orbiter Laser Altimeter (LOLA) topography. Icarus, 2017, 283, 138-145.	1.1	13
87	Summary of the results from the lunar orbiter laser altimeter after seven years in lunar orbit. Icarus, 2017, 283, 70-91.	1.1	116
88	Insights into surface runoff on early Mars from paleolake basin morphology and stratigraphy. Geology, 2016, 44, 419-422.	2.0	72
89	Impact ejecta-induced melting of surface ice deposits on Mars. Icarus, 2016, 280, 205-233.	1.1	15
90	Thicknesses of mare basalts on the Moon from gravity and topography. Journal of Geophysical Research E: Planets, 2016, 121, 854-870.	1.5	51

#	Article	IF	CITATIONS
91	Comparison of areas in shadow from imaging and altimetry in the north polar region of Mercury and implications for polar ice deposits. Icarus, 2016, 280, 158-171.	1.1	40
92	Recent shallow moonquake and impact-triggered boulder falls on the Moon: New insights from the SchrĶdinger basin. Journal of Geophysical Research E: Planets, 2016, 121, 147-179.	1.5	57
93	Formation of the Orientale lunar multiring basin. Science, 2016, 354, 441-444.	6.0	78
94	Did the Orientale impact melt sheet undergo largeâ€scale igneous differentiation by crystal settling?. Geophysical Research Letters, 2016, 43, 11,156.	1.5	16
95	The steepest slopes on the Moon from Lunar Orbiter Laser Altimeter (LOLA) Data: Spatial Distribution and Correlation with Geologic Features. Icarus, 2016, 273, 329-336.	1.1	25
96	Comparison of "warm and wet―and "cold and icy―scenarios for early Mars in a 3â€D climate model. Journal of Geophysical Research E: Planets, 2015, 120, 1201-1219.	1.5	153
97	The fractured Moon: Production and saturation of porosity in the lunar highlands from impact cratering. Geophysical Research Letters, 2015, 42, 6939-6944.	1.5	63
98	Active volcanism on Venus in the Ganiki Chasma rift zone. Geophysical Research Letters, 2015, 42, 4762-4769.	1.5	107
99	Lunar impact basins revealed by Gravity Recovery and Interior Laboratory measurements. Science Advances, 2015, 1, e1500852.	4.7	173
100	Lunar cryptomaria: Mineralogy and composition of ancient volcanic deposits. Planetary and Space Science, 2015, 106, 67-81.	0.9	40
101	Glaciation in the Late Noachian Icy Highlands: Ice accumulation, distribution, flow rates, basal melting, and top-down melting rates and patterns. Planetary and Space Science, 2015, 106, 82-98.	0.9	86
102	Martian surface/nearâ€surface water inventory: Sources, sinks, and changes with time. Geophysical Research Letters, 2015, 42, 726-732.	1.5	113
103	Classification and analysis of candidate impact crater-hosted closed-basin lakes on Mars. Icarus, 2015, 260, 346-367.	1.1	91
104	Late Noachian and early Hesperian ridge systems in the south circumpolar Dorsa Argentea Formation, Mars: Evidence for two stages of melting of an extensive late Noachian ice sheet. Planetary and Space Science, 2015, 109-110, 1-20.	0.9	33
105	Evidence for geochemical terranes on Mercury: Global mapping of major elements with MESSENGER's X-Ray Spectrometer. Earth and Planetary Science Letters, 2015, 416, 109-120.	1.8	167
106	Late Noachian fluvial erosion on Mars: Cumulative water volumes required to carve the valley networks and grain size of bed-sediment. Planetary and Space Science, 2015, 117, 429-435.	0.9	21
107	Crater degradation in the Noachian highlands of Mars: Assessing the hypothesis of regional snow and ice deposits on a cold and icy early Mars. Planetary and Space Science, 2015, 117, 401-420.	0.9	19
108	Lunar floor-fractured craters as magmatic intrusions: Geometry, modes of emplacement, associated tectonic and volcanic features, and implications for gravity anomalies. Icarus, 2015, 248, 424-447.	1.1	71

#	Article	IF	CITATIONS
109	Lunar cryptomaria: Physical characteristics, distribution, and implications for ancient volcanism. Icarus, 2015, 247, 150-171.	1.1	94
110	Time‣apse Imaging in Polar Environments. Eos, 2014, 95, 417-418.	0.1	2
111	Coldâ€based debrisâ€covered glaciers: Evaluating their potential as climate archives through studies of groundâ€penetrating radar and surface morphology. Journal of Geophysical Research F: Earth Surface, 2014, 119, 2505-2540.	1.0	31
112	The global albedo of the Moon at 1064 nm from LOLA. Journal of Geophysical Research E: Planets, 2014, 119, 1665-1679.	1.5	96
113	The geologic evolution of Venus: Insights into Earth history. Geology, 2014, 42, 95-96.	2.0	12
114	Episodic warming of early Mars by punctuatedÂvolcanism. Nature Geoscience, 2014, 7, 865-868.	5.4	147
115	An extended period of episodic northern mid-latitude glaciation on Mars during the Middle to Late Amazonian: Implications for long-term obliquity history. Geology, 2014, 42, 763-766.	2.0	39
116	Amazonian mid- to high-latitude glaciation on Mars: Supply-limited ice sources, ice accumulation patterns, and concentric crater fill glacial flow and ice sequestration. Planetary and Space Science, 2014, 91, 60-76.	0.9	42
117	Images of surface volatiles in Mercury's polar craters acquired by the MESSENGER spacecraft. Geology, 2014, 42, 1051-1054.	2.0	67
118	Structure and evolution of the lunar Procellarum region as revealed by GRAIL gravity data. Nature, 2014, 514, 68-71.	13.7	85
119	Impact melt differentiation in the South Pole-Aitken basin: Some observations and speculations. Planetary and Space Science, 2014, 91, 101-106.	0.9	92
120	Comparisons of fresh complex impact craters on Mercury and the Moon: Implications for controlling factors in impact excavation processes. Icarus, 2014, 228, 260-275.	1.1	34
121	Formation of lobate debris aprons on Mars: Assessment of regional ice sheet collapse and debris-cover armoring. Icarus, 2014, 228, 54-63.	1.1	51
122	The climate history of early Mars: insights from the Antarctic McMurdo Dry Valleys hydrologic system. Antarctic Science, 2014, 26, 774-800.	0.5	84
123	Formation of doubleâ€layered ejecta craters on Mars: A glacial substrate model. Geophysical Research Letters, 2013, 40, 3819-3824.	1.5	44
124	Lunar sinuous rilles: Distribution, characteristics, and implications for their origin. Planetary and Space Science, 2013, 79-80, 1-38.	0.9	109
125	Detecting volcanic resurfacing of heavily cratered terrain: Flooding simulations on the Moon using Lunar Orbiter Laser Altimeter (LOLA) data. Planetary and Space Science, 2013, 85, 24-37.	0.9	23
126	Large mineralogically distinct impact melt feature at Copernicus crater – Evidence for retention of compositional heterogeneity. Geophysical Research Letters, 2013, 40, 1043-1048.	1.5	25

#	Article	IF	CITATIONS
127	Lunar topographic roughness maps from Lunar Orbiter Laser Altimeter (LOLA) data: Scale dependence and correlation with geologic features and units. Icarus, 2013, 226, 52-66.	1.1	90
128	Geology and petrology of enormous volumes of impact melt on the Moon: A case study of the Orientale basin impact melt sea. Icarus, 2013, 223, 749-765.	1.1	114
129	A review of geomorphic processes and landforms in the Dry Valleys of southern Victoria Land: implications for evaluating climate change and ice-sheet stability. Geological Society Special Publication, 2013, 381, 319-352.	0.8	14
130	Constraints on the volatile distribution within Shackleton crater at the lunar south pole. Nature, 2012, 486, 378-381.	13.7	159
131	Lunar impact basins: Stratigraphy, sequence and ages from superposed impact crater populations measured from Lunar Orbiter Laser Altimeter (LOLA) data. Journal of Geophysical Research, 2012, 117, .	3.3	114
132	New observational evidence of global seismic effects of basinâ€forming impacts on the Moon from Lunar Reconnaissance Orbiter Lunar Orbiter Laser Altimeter data. Journal of Geophysical Research, 2012, 117, .	3.3	32
133	Origin of lunar sinuous rilles: Modeling effects of gravity, surface slope, and lava composition on erosion rates during the formation of Rima Prinz. Journal of Geophysical Research, 2012, 117, .	3.3	58
134	The transition from complex craters to multiâ€ring basins on the Moon: Quantitative geometric properties from Lunar Reconnaissance Orbiter Lunar Orbiter Laser Altimeter (LOLA) data. Journal of Geophysical Research, 2012, 117, .	3.3	40
135	Lunar floorâ€fractured craters: Classification, distribution, origin and implications for magmatism and shallow crustal structure. Journal of Geophysical Research, 2012, 117, .	3.3	99
136	An analysis of open-basin lake deposits on Mars: Evidence for the nature of associated lacustrine deposits and post-lacustrine modification processes. Icarus, 2012, 219, 211-229.	1.1	105
137	Patterns of accumulation and flow of ice in the mid-latitudes of Mars during the Amazonian. Icarus, 2012, 219, 723-732.	1.1	57
138	The dispersal of pyroclasts from ancient explosive volcanoes on Mars: Implications for the friable layered deposits. Icarus, 2012, 219, 358-381.	1.1	82
139	An overfilled lacustrine system and progradational delta in Jezero crater, Mars: Implications for Noachian climate. Planetary and Space Science, 2012, 67, 28-45.	0.9	138
140	Global surface slopes and roughness of the Moon from the Lunar Orbiter Laser Altimeter. Journal of Geophysical Research, 2011, 116, .	3.3	149
141	New insights into lunar petrology: Distribution and composition of prominent low-Ca pyroxene exposures as observed by the Moon Mineralogy Mapper (M ³). Journal of Geophysical Research, 2011, 116, .	3.3	80
142	Compositional variability of the Marius Hills volcanic complex from the Moon Mineralogy Mapper (M ³). Journal of Geophysical Research, 2011, 116, .	3.3	52
143	Compositional diversity and geologic insights of the Aristarchus crater from Moon Mineralogy Mapper data. Journal of Geophysical Research, 2011, 116, .	3.3	83
144	The mineralogy of late stage lunar volcanism as observed by the Moon Mineralogy Mapper on Chandrayaan-1. Journal of Geophysical Research, 2011, 116, .	3.3	71

#	Article	IF	CITATIONS
145	Lunar mare deposits associated with the Orientale impact basin: New insights into mineralogy, history, mode of emplacement, and relation to Orientale Basin evolution from Moon Mineralogy Mapper (M ³) data from Chandrayaan-1. Journal of Geophysical Research, 2011, 116, .	3.3	92
146	Thickness of proximal ejecta from the Orientale Basin from Lunar Orbiter Laser Altimeter (LOLA) data: Implications for multi-ring basin formation. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	68
147	The Moon Mineralogy Mapper (M ³) imaging spectrometer for lunar science: Instrument description, calibration, on-orbit measurements, science data calibration and on-orbit validation. Journal of Geophysical Research, 2011, 116, .	3.3	173
148	Modeling vapor diffusion within cold and dry supraglacial tills of Antarctica: Implications for the preservation of ancient ice. Geomorphology, 2011, 126, 159-173.	1.1	29
149	Global geological map of Venus. Planetary and Space Science, 2011, 59, 1559-1600.	0.9	165
150	The transition from complex crater to peak-ring basin on the Moon: New observations from the Lunar Orbiter Laser Altimeter (LOLA) instrument. Icarus, 2011, 214, 377-393.	1.1	74
151	Evidence for Amazonian northern mid-latitude regional glacial landsystems on Mars: Glacial flow models using GCM-driven climate results and comparisons to geological observations. Icarus, 2011, 216, 23-39.	1.1	36
152	Sequence and timing of conditions on early Mars. Icarus, 2011, 211, 1204-1214.	1.1	140
153	Global Distribution of Large Lunar Craters: Implications for Resurfacing and Impactor Populations. Science, 2010, 329, 1504-1507.	6.0	210
154	Global geological mapping of Ganymede. Icarus, 2010, 207, 845-867.	1.1	69
155	Supraglacial and proglacial valleys on Amazonian Mars. Icarus, 2010, 208, 86-100.	1.1	90
156	Concentric crater fill in the northern mid-latitudes of Mars: Formation processes and relationships to similar landforms of glacial origin. Icarus, 2010, 209, 390-404.	1.1	111
157	Pedestal crater heights on Mars: A proxy for the thicknesses of past, ice-rich, Amazonian deposits. Icarus, 2010, 210, 92-101.	1.1	48
158	Lunar red spots: Stratigraphic sequence and ages of domes and plains in the Hansteen and Helmet regions on the lunar nearside. Journal of Geophysical Research, 2010, 115, .	3.3	37
159	Ages and stratigraphy of lunar mare basalts in Mare Frigoris and other nearside maria based on crater sizeâ€frequency distribution measurements. Journal of Geophysical Research, 2010, 115, .	3.3	123
160	Initial observations from the Lunar Orbiter Laser Altimeter (LOLA). Geophysical Research Letters, 2010, 37, .	1.5	356
161	Viscous flow lobes in central Taylor Valley, Antarctica: Origin as remnant buried glacial ice. Geomorphology, 2010, 120, 174-185.	1.1	52
162	Geologic history of Mars. Earth and Planetary Science Letters, 2010, 294, 185-203.	1.8	538

#	Article	IF	CITATIONS
163	Acquisition and history of water on Mars. , 2010, , 31-67.		10
164	Sinton crater, Mars: Evidence for impact into a plateau icefield and melting to produce valley networks at the Hesperian–Amazonian boundary. Icarus, 2009, 202, 39-59.	1.1	43
165	Lineated valley fill (LVF) and lobate debris aprons (LDA) in the Deuteronilus Mensae northern dichotomy boundary region, Mars: Constraints on the extent, age and episodicity of Amazonian glacial events. Icarus, 2009, 202, 22-38.	1.1	92
166	Amazonian northern mid-latitude glaciation on Mars: A proposed climate scenario. Icarus, 2009, 203, 390-405.	1.1	240
167	Amazonianâ€aged fluvial valley systems in a climatic microenvironment on Mars: Melting of ice deposits on the interior of Lyot Crater. Geophysical Research Letters, 2009, 36, .	1.5	61
168	Periods of active permafrost layer formation during the geological history of Mars: Implications for circum-polar and mid-latitude surface processes. Planetary and Space Science, 2008, 56, 289-302.	0.9	108
169	The timing of martian valley network activity: Constraints from buffered crater counting. Icarus, 2008, 195, 61-89.	1.1	375
170	Valley network-fed, open-basin lakes on Mars: Distribution and implications for Noachian surface and subsurface hydrology. Icarus, 2008, 198, 37-56.	1.1	385
171	Clay minerals in delta deposits and organic preservation potential on Mars. Nature Geoscience, 2008, 1, 355-358.	5.4	293
172	Formation of gullies on Mars: Link to recent climate history and insolation microenvironments implicate surface water flow origin. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13258-13263.	3.3	137
173	Shallow seismic surveys and ice thickness estimates of the Mullins Valley debris-covered glacier, McMurdo Dry Valleys, Antarctica. Antarctic Science, 2007, 19, 485-496.	0.5	22
174	Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 1. Ancient impact melt in the Isidis Basin and implications for the transition from the Noachian to Hesperian. Journal of Geophysical Research, 2007, 112, .	3.3	130
175	Layered mantling deposits in northeast Arabia Terra, Mars: Noachianâ€Hesperian sedimentation, erosion, and terrain inversion. Journal of Geophysical Research, 2007, 112, .	3.3	55
176	Antarctic dry valleys: Microclimate zonation, variable geomorphic processes, and implications for assessing climate change on Mars. Icarus, 2007, 192, 187-222.	1.1	354
177	Modification of impact craters in the northern plains of Mars: Implications for Amazonian climate history. Meteoritics and Planetary Science, 2006, 41, 1633-1646.	0.7	33
178	Modification of the dichotomy boundary on Mars by Amazonian mid-latitude regional glaciation. Geophysical Research Letters, 2006, 33, .	1.5	109
179	Formation of Glaciers on Mars by Atmospheric Precipitation at High Obliquity. Science, 2006, 311, 368-371.	6.0	405
180	New Perspectives on Ancient Mars. Science, 2005, 307, 1214-1220.	6.0	265

JAMES W. HEAD

#	Article	IF	CITATIONS
181	Mars outflow channels: A reappraisal of the estimation of water flow velocities from water depths, regional slopes, and channel floor properties. Journal of Geophysical Research, 2004, 109, .	3.3	102
182	Impact crater air fall deposits on the surface of Venus: Areal distribution, estimated thickness, recognition in surface panoramas, and implications for provenance of sampled surface materials. Journal of Geophysical Research, 2004, 109, .	3.3	33
183	Recent ice ages on Mars. Nature, 2003, 426, 797-802.	13.7	705
184	Deep generation of magmatic gas on the Moon and implications for pyroclastic eruptions. Geophysical Research Letters, 2003, 30, .	1.5	40
185	Lunar Gruithuisen and Mairan domes: Rheology and mode of emplacement. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	79
186	Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Nubium, Mare Cognitum, and Mare Insularum. Journal of Geophysical Research, 2003, 108, .	3.3	366
187	North-south topographic slope asymmetry on Mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 2003, 30, .	1.5	53
188	Cold-based mountain glaciers on Mars: Western Arsia Mons. Geology, 2003, 31, 641.	2.0	212
189	Fate of outflow channel effluents in the northern lowlands of Mars: The Vastitas Borealis Formation as a sublimation residue from frozen ponded bodies of water. Journal of Geophysical Research, 2002, 107, 4-1-4-25.	3.3	166
190	Lunar mare basalt flow units: Thicknesses determined from crater size-frequency distributions. Geophysical Research Letters, 2002, 29, 89-1-89-4.	1.5	114
191	The martian hydrosphere/cryosphere system: Implications of the absence of hydrologic activity at Lyot crater. Geophysical Research Letters, 2002, 29, 8-1-8-4.	1.5	19
192	Mars: Nature and evolution of young latitude-dependent water-ice-rich mantle. Geophysical Research Letters, 2002, 29, 14-1-14-4.	1.5	180
193	Stratigraphic sequence and ages of volcanic units in the Gruithuisen region of the Moon. Journal of Geophysical Research, 2002, 107, 14-1-14-15.	3.3	50
194	Dark ring in southwestern Orientale Basin: Origin as a single pyroclastic eruption. Journal of Geophysical Research, 2002, 107, 1-1.	3.3	44
195	Lava fountains from the 1999 Tvashtar Catena fissure eruption on Io: Implications for dike emplacement mechanisms, eruption rates, and crustal structure. Journal of Geophysical Research, 2001, 106, 32997-33004.	3.3	37
196	Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars. Journal of Geophysical Research, 2001, 106, 23689-23722.	3.3	1,344
197	Rock types of South Pole-Aitken basin and extent of basaltic volcanism. Journal of Geophysical Research, 2001, 106, 28001-28022.	3.3	174
198	Ages of mare basalts on the lunar nearside. Journal of Geophysical Research, 2000, 105, 29239-29275.	3.3	327

#	Article	IF	CITATIONS
199	Kilometer-scale roughness of Mars: Results from MOLA data analysis. Journal of Geophysical Research, 2000, 105, 26695-26711.	3.3	313
200	Characteristics and origin of polygonal terrain in southern Utopia Planitia, Mars: Results from Mars Orbiter Laser Altimeter and Mars Orbiter Camera data. Journal of Geophysical Research, 2000, 105, 11999-12022.	3.3	107
201	The Global Topography of Mars and Implications for Surface Evolution. Science, 1999, 284, 1495-1503.	6.0	826
202	Spectral properties of the Marius Hills volcanic complex and implications for the formation of lunar domes and cones. Journal of Geophysical Research, 1999, 104, 18933-18956.	3.3	74
203	Geology of mare deposits in South Pole-Aitken basin as seen by Clementine UV/VIS data. Journal of Geophysical Research, 1999, 104, 18957-18979.	3.3	38
204	The geologic history of Venus: A stratigraphic view. Journal of Geophysical Research, 1998, 103, 8531-8544.	3.3	156
205	Lunar regional dark mantle deposits: Geologic, multispectral, and modeling studies. Journal of Geophysical Research, 1998, 103, 22725-22759.	3.3	98
206	Topography of the Northern Hemisphere of Mars from the Mars Orbiter Laser Altimeter. Science, 1998, 279, 1686-1692.	6.0	196
207	Sequence of tectonic deformation in the history of Venus: Evidence from global stratigraphic relationships. Geology, 1998, 26, 35.	2.0	49
208	Volumes of lunar lava ponds in South Pole-Aitken and Orientale Basins: Implications for eruption conditions, transport mechanisms, and magma source regions. Journal of Geophysical Research, 1997, 102, 10909-10931.	3.3	60
209	Duration of tessera deformation on Venus. Journal of Geophysical Research, 1997, 102, 13357-13368.	3.3	35
210	Mineralogy of the Mafic Anomaly in the South Pole-Aitken Basin: Implications for excavation of the lunar mantle. Geophysical Research Letters, 1997, 24, 1903-1906.	1.5	110
211	Buried stratigraphic relationships along the southwestern shores of Oceanus Procellarum: Implications for early lunar volcanism. Journal of Geophysical Research, 1996, 101, 18913-18925.	3.3	51
212	Mare Tranquillitatis: Basalt emplacement history and relation to lunar samples. Journal of Geophysical Research, 1996, 101, 23213-23228.	3.3	51
213	Criteria for the detection of lunar cryptomaria. Earth, Moon and Planets, 1995, 69, 141-172.	0.3	93
214	Lunar graben formation due to near-surface deformation accompanying dike emplacement. Planetary and Space Science, 1993, 41, 719-727.	0.9	103
215	Galileo observations of postâ€imbrium lunar craters during the first Eearthâ€Moon flyby. Journal of Geophysical Research, 1993, 98, 17207-17231.	3.3	49
216	Crustal diversity of the moon: Compositional analyses of Galileo solid state imaging data. Journal of Geophysical Research, 1993, 98, 17127-17148.	3.3	85

#	Article	IF	CITATIONS
217	Lunar impact basins: New data for the western limb and far side (Orientale and South Poleâ€Aitken) Tj ETQq1 i	1 0.784314	⊦rgBT /Overlo
218	Lunar Impact Basins and Crustal Heterogeneity: New Western Limb and Far Side Data from Galileo. Science, 1992, 255, 570-576.	6.0	82
219	Lunar mare volcanism: Stratigraphy, eruption conditions, and the evolution of secondary crusts. Geochimica Et Cosmochimica Acta, 1992, 56, 2155-2175.	1.6	399
220	Steepâ€ s ided domes on Venus: Characteristics, geologic setting, and eruption conditions from Magellan data. Journal of Geophysical Research, 1992, 97, 13445-13478.	3.3	113
221	Absence of large shield volcanoes and calderas on the Moon: Consequence of magma transport phenomena?. Geophysical Research Letters, 1991, 18, 2121-2124.	1.5	55
222	Venus Volcanism: Initial Analysis from Magellan Data. Science, 1991, 252, 276-288.	6.0	128
223	The deep structure of lunar basins: Implications for basin formation and modification. Journal of Geophysical Research, 1985, 90, 3049-3064.	3.3	62
224	The evolution of impact basins: Cooling, subsidence, and thermal stress. Journal of Geophysical Research, 1985, 90, 12415-12433.	3.3	62
225	The evolution of impact basins: Viscous relaxation of topographic relief. Journal of Geophysical Research, 1982, 87, 3975-3992.	3.3	90
226	Lava flooding of ancient planetary crusts: Geometry, thickness, and volumes of flooded lunar impact basins. The Moon and the Planets, 1982, 26, 61-88.	0.5	68
227	Ascent and eruption of basaltic magma on the Earth and Moon. Journal of Geophysical Research, 1981, 86, 2971-3001.	3.3	642
228	Lunar mare domes: Classification and modes of origin. The Moon and the Planets, 1980, 22, 235-258.	0.5	120
229	Lunar Mascon Basins: Lava filling, tectonics, and evolution of the lithosphere. Reviews of Geophysics, 1980, 18, 107-141.	9.0	301
230	Stratigraphy of Oceanus Procellarum basalts: Sources and styles of emplacement. Journal of Geophysical Research, 1980, 85, 6579-6609.	3.3	85
231	Serenitatis multi-ringed basin: Regional geology and basin ring interpretation. The Moon and the Planets, 1979, 21, 439-462.	0.5	24
232	Vertical movement in mare basins: Relation to mare emplacement, basin tectonics, and lunar thermal history. Journal of Geophysical Research, 1979, 84, 1667-1682.	3.3	205
233	Mare Crisium: Regional stratigraphy and geologic history. Geophysical Research Letters, 1978, 5, 313-316.	1.5	8
234	Imbrian-Age Highland Volcanism on the Moon: The Gruithuisen and Mairan Domes. Science, 1978, 199, 1433-1436.	6.0	85

#	Article	IF	CITATIONS
235	Lunar volcanism in space and time. Reviews of Geophysics, 1976, 14, 265-300.	9.0	317
236	Evidence for the sedimentary origin of imbrium sculpture and lunar basin radial texture. The Moon, 1976, 15, 445-462.	0.4	9
237	Processes of lunar crater degradation: Changes in style with geologic time. The Moon, 1975, 12, 299-329.	0.4	82
238	Morphology and structure of the taurus-littrow highlands (Apollo 17): evidence for their origin and evolution. The Moon, 1974, 9, 355-395.	0.4	27
239	Orientale multi-ringed basin interior and implications for the petrogenesis of lunar highland samples. The Moon, 1974, 11, 327-356.	0.4	148