Jian-Mei Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8144551/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An overview of electrode materials in microbial fuel cells. Journal of Power Sources, 2011, 196, 4427-4435.	7.8	688
2	Quantitative changes of plant defense enzymes and phytohormone in biocontrol of cucumber Fusarium wilt by Bacillus subtilis B579. World Journal of Microbiology and Biotechnology, 2010, 26, 675-684.	3.6	99
3	A new electrochemically active bacterium phylogenetically related to Tolumonas osonensis and power performance in MFCs. Bioresource Technology, 2013, 139, 141-148.	9.6	62
4	Carbon dioxide sequestration accompanied by bioenergy generation using a bubbling-type photosynthetic algae microbial fuel cell. Bioresource Technology, 2019, 280, 95-103.	9.6	54
5	Effects of hydroxypropyl-β-cyclodextrin on cell growth, activity, and integrity of steroid-transforming Arthrobacter simplex and Mycobacterium sp Applied Microbiology and Biotechnology, 2011, 90, 1995-2003.	3.6	48
6	Characterization of a novel strain phylogenetically related to Kocuria rhizophila and its chemical modification to improve performance of microbial fuel cells. Biosensors and Bioelectronics, 2015, 69, 113-120.	10.1	38
7	Genome Shuffling of <i>Streptomyces gilvosporeus</i> for Improving Natamycin Production. Journal of Agricultural and Food Chemistry, 2012, 60, 6026-6036.	5.2	30
8	Enhancement of bioelectricity generation via heterologous expression of IrrE in Pseudomonas aeruginosa-inoculated MFCs. Biosensors and Bioelectronics, 2018, 117, 23-31.	10.1	26
9	A new technique for promoting cyclic utilization of cyclodextrins in biotransformation. Journal of Industrial Microbiology and Biotechnology, 2017, 44, 1-7.	3.0	23
10	Economical production of androstenedione and 9α-hydroxyandrostenedione using untreated cane molasses by recombinant mycobacteria. Bioresource Technology, 2019, 290, 121750.	9.6	21
11	Electrochemical surface modification of carbon mesh anode to improve the performance of air-cathode microbial fuel cells. Bioprocess and Biosystems Engineering, 2013, 36, 1889-1896.	3.4	18
12	lrrE Improves Organic Solvent Tolerance and Δ ¹ -Dehydrogenation Productivity of <i>Arthrobacter simplex</i> . Journal of Agricultural and Food Chemistry, 2018, 66, 5210-5220.	5.2	18
13	A highly efficient step-wise biotransformation strategy for direct conversion of phytosterol to boldenone. Bioresource Technology, 2019, 283, 242-250.	9.6	18
14	GC × GC-MS analysis and hypolipidemic effects of polyphenol extracts from Shanxi-aged vinegar in rats under a high fat diet. Food and Function, 2020, 11, 7468-7480.	4.6	18
15	Efficient repeated batch production of androstenedione using untreated cane molasses by Mycobacterium neoaurum driven by ATP futile cycle. Bioresource Technology, 2020, 309, 123307.	9.6	17
16	Biotransformation of bavachinin by three fungal cell cultures. Journal of Bioscience and Bioengineering, 2014, 117, 191-196.	2.2	16
17	Improving phytosterol biotransformation at low nitrogen levels by enhancing the methylcitrate cycle with transcriptional regulators PrpR and GlnR of Mycobacterium neoaurum. Microbial Cell Factories, 2020, 19, 13.	4.0	16
18	Highly efficient synthesis of 5 yanovaleramide by <i>Rhodococcus ruber</i> CGMCC3090 resting cells. Journal of Chemical Technology and Biotechnology, 2012, 87, 1396-1400.	3.2	15

Jian-Mei Luo

#	Article	IF	CITATIONS
19	The ethanol-induced global alteration in Arthrobacter simplex and its mutants with enhanced ethanol tolerance. Applied Microbiology and Biotechnology, 2018, 102, 9331-9350.	3.6	15
20	Improving acetic acid production of <i>Acetobacter pasteurianus</i> AC2005 in hawthorn vinegar fermentation by using beer for seed culture. International Journal of Food Science and Technology, 2010, 45, 2394-2399.	2.7	14
21	Improvement of AD Biosynthesis Response to Enhanced Oxygen Transfer by Oxygen Vectors in Mycobacterium neoaurum TCCC 11979. Applied Biochemistry and Biotechnology, 2017, 182, 1564-1574.	2.9	13
22	Identification, Biological Characteristics, and Active Site Residues of 3-Ketosteroid Δ ¹ -Dehydrogenase Homologues from <i>Arthrobacter simplex</i> . Journal of Agricultural and Food Chemistry, 2020, 68, 9496-9512.	5.2	13
23	Global regulator engineering enhances bioelectricity generation in Pseudomonas aeruginosa-inoculated MFCs. Biosensors and Bioelectronics, 2020, 163, 112269.	10.1	13
24	Production of 5α-androstene-3,17-dione from phytosterols by co-expression of 5α-reductase and glucose-6-phosphate dehydrogenase in engineered <i>Mycobacterium neoaurum</i> . Green Chemistry, 2019, 21, 1809-1815.	9.0	12
25	The effect of ethanol on cell properties and steroid 1â€enâ€dehydrogenation biotransformation of <i><scp>A</scp>rthrobacter simplex</i> . Biotechnology and Applied Biochemistry, 2014, 61, 555-564.	3.1	10
26	Compatible solutes adaptive alterations in Arthrobacter simplex during exposure to ethanol, and the effect of trehalose on the stress resistance and biotransformation performance. Bioprocess and Biosystems Engineering, 2020, 43, 895-908.	3.4	10
27	Characterization of the inclusion complex of 16,17α-epoxyprogesterone with randomly methylated β-cyclodextrin in aqueous solution and in the solid state. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2011, 69, 273-280.	1.6	8
28	Improving Biotransformation Efficiency of <i>Arthrobacter simplex</i> by Enhancement of Cell Stress Tolerance and Enzyme Activity. Journal of Agricultural and Food Chemistry, 2021, 69, 704-716.	5.2	8
29	Efficient one-step biocatalytic multienzyme cascade strategy for direct conversion of phytosterol to C17-hydroxylated steroids. Applied and Environmental Microbiology, 2021, 87, e0032121.	3.1	7
30	Optimization of Conditions for the Biotransformation of 5-Cyanovaleramide from Adiponitrile by Rhodococcus ruber CGMCC 3090. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	3
31	Genomewide Transcriptome Responses of <i>Arthrobacter simplex</i> to Cortisone Acetate and its Mutants with Enhanced Δ ¹ -Dehydrogenation Efficiency. Journal of Agricultural and Food Chemistry, 2021, 69, 12773-12784.	5.2	3
32	The mechanism of β-cyclodextrin on the 11β-hydroxylation biotransformation of steroid. , 2010, , .		2
33	Protoplast Formation and Regeneration Conditions of Streptomyces gilvosporeus. , 2009, , .		1
34	Application of RAPD Assays in Analyzing Streptomyces Gilvosporeus Strains from Genome Shuffling. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	1
35	Hydrazine hydrate chemical reduction as an effective anode modification method to improve the performance of microbial fuel cells. Journal of Chemical Technology and Biotechnology, 2013, 88, 2075-2081.	3.2	1