List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8144493/publications.pdf Version: 2024-02-01

CHANCEINLL

#	Article	IF	CITATIONS
1	Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dynamics, 2007, 48, 409-416.	5.2	743
2	Remarks on fractional derivatives. Applied Mathematics and Computation, 2007, 187, 777-784.	2.2	530
3	Chaos in Chen's system with a fractional order. Chaos, Solitons and Fractals, 2004, 22, 443-450.	5.1	490
4	A CrankNicolson ADI Spectral Method for a Two-Dimensional Riesz Space Fractional Nonlinear Reaction-Diffusion Equation. SIAM Journal on Numerical Analysis, 2014, 52, 2599-2622.	2.3	298
5	Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Computers and Mathematics With Applications, 2011, 62, 855-875.	2.7	281
6	Synchronization between two coupled complex networks. Physical Review E, 2007, 76, 046204.	2.1	245
7	The Use of Finite Difference/Element Approaches for Solving the Time-Fractional Subdiffusion Equation. SIAM Journal of Scientific Computing, 2013, 35, A2976-A3000.	2.8	245
8	Numerical approaches to fractional calculus and fractional ordinary differential equation. Journal of Computational Physics, 2011, 230, 3352-3368.	3.8	193
9	On the fractional Adams method. Computers and Mathematics With Applications, 2009, 58, 1573-1588.	2.7	185
10	On Riemann-Liouville and Caputo Derivatives. Discrete Dynamics in Nature and Society, 2011, 2011, 1-15.	0.9	184
11	Stability analysis of fractional differential system with Riemann–Liouville derivative. Mathematical and Computer Modelling, 2010, 52, 862-874.	2.0	181
12	Numerical Algorithms for Time-Fractional Subdiffusion Equation with Second-Order Accuracy. SIAM Journal of Scientific Computing, 2015, 37, A55-A78.	2.8	173
13	Generalized projective synchronization of a unified chaotic system. Chaos, Solitons and Fractals, 2005, 26, 1119-1124.	5.1	168
14	The Finite Difference Methods for Fractional Ordinary Differential Equations. Numerical Functional Analysis and Optimization, 2013, 34, 149-179.	1.4	158
15	A note on the finite element method for the space-fractional advection diffusion equation. Computers and Mathematics With Applications, 2010, 59, 1718-1726.	2.7	152
16	FINITE DIFFERENCE METHODS FOR FRACTIONAL DIFFERENTIAL EQUATIONS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2012, 22, 1230014.	1.7	152
17	Spectral approximations to the fractional integral and derivative. Fractional Calculus and Applied Analysis, 2012, 15, 383-406.	2.2	129
18	Fractional dynamical system and its linearization theorem. Nonlinear Dynamics, 2013, 71, 621-633.	5.2	128

#	Article	IF	CITATIONS
19	Finite difference methods with non-uniform meshes for nonlinear fractional differential equations. Journal of Computational Physics, 2016, 316, 614-631.	3.8	127
20	On chaos synchronization of fractional differential equations. Chaos, Solitons and Fractals, 2007, 32, 725-735.	5.1	115
21	The synchronization of three fractional differential systems. Chaos, Solitons and Fractals, 2007, 32, 751-757.	5.1	114
22	FINITE DIFFERENCE SCHEMES FOR VARIABLE-ORDER TIME FRACTIONAL DIFFUSION EQUATION. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2012, 22, 1250085.	1.7	114
23	Fractional difference/finite element approximations for the time–space fractional telegraph equation. Applied Mathematics and Computation, 2012, 219, 2975-2988.	2.2	113
24	Synchronization in fractional-order differential systems. Physica D: Nonlinear Phenomena, 2005, 212, 111-125.	2.8	111
25	Fractional differential models for anomalous diffusion. Physica A: Statistical Mechanics and Its Applications, 2010, 389, 2719-2724.	2.6	111
26	High-order algorithms for Riesz derivative and their applications (II). Journal of Computational Physics, 2015, 293, 218-237.	3.8	104
27	Outer synchronization of coupled discrete-time networks. Chaos, 2009, 19, 013106.	2.5	98
28	Numerical algorithm based on Adomian decomposition for fractional differential equations. Computers and Mathematics With Applications, 2009, 57, 1672-1681.	2.7	96
29	Synchronization of Chaotic Fractional Chen System. Journal of the Physical Society of Japan, 2005, 74, 1645-1648.	1.6	91
30	Fractional derivatives in complex planes. Nonlinear Analysis: Theory, Methods & Applications, 2009, 71, 1857-1869.	1.1	91
31	Higher order finite difference method for the reaction and anomalous-diffusion equation. Applied Mathematical Modelling, 2014, 38, 3802-3821.	4.2	89
32	High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations (II). Fractional Calculus and Applied Analysis, 2015, 18, 735-761.	2.2	82
33	Numerical methods for fractional partial differential equations. International Journal of Computer Mathematics, 2018, 95, 1048-1099.	1.8	80
34	CHAOS SYNCHRONIZATION OF FRACTIONAL-ORDER DIFFERENTIAL SYSTEMS. International Journal of Modern Physics B, 2006, 20, 791-803.	2.0	76
35	High-order approximation to Caputo derivatives and Caputo-type advection–diffusion equations (III). Journal of Computational and Applied Mathematics, 2016, 299, 159-175.	2.0	75
36	High-Order Numerical Algorithms for Riesz Derivatives via Constructing New Generating Functions. Journal of Scientific Computing, 2017, 71, 759-784.	2.3	74

#	Article	IF	CITATIONS
37	An improved version of the Marotto Theorem. Chaos, Solitons and Fractals, 2003, 18, 69-77.	5.1	66
38	Chaos synchronization in fractional differential systems. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20120155.	3.4	65
39	The evolution of chaotic dynamics for fractional unified system. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 401-407.	2.1	64
40	Convergence speed of a fractional order consensus algorithm over undirected scaleâ€free networks. Asian Journal of Control, 2011, 13, 936-946.	3.0	63
41	On the bound of the Lyapunov exponents for the fractional differential systems. Chaos, 2010, 20, 013127.	2.5	59
42	High-Order Algorithms for Riesz Derivative and their Applications (III). Fractional Calculus and Applied Analysis, 2016, 19, 19-55.	2.2	58
43	ON HADAMARD FRACTIONAL CALCULUS. Fractals, 2017, 25, 1750033.	3.7	57
44	On Riesz Derivative. Fractional Calculus and Applied Analysis, 2019, 22, 287-301.	2.2	53
45	ANALYSIS OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH MULTI-ORDERS. Fractals, 2007, 15, 173-182.	3.7	52
46	Does the fractional Brusselator with efficient dimension less than 1 have a limit cycle?. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 363, 414-419.	2.1	52
47	Stability Analysis of Fractional Differential Systems with Order Lying in (1, 2). Advances in Difference Equations, 2011, 2011, 1-17.	3.5	51
48	The local discontinuous Galerkin finite element methods for Caputo-type partial differential equations: Numerical analysis. Applied Numerical Mathematics, 2019, 140, 1-22.	2.1	51
49	Estimating the Lyapunov exponents of discrete systems. Chaos, 2004, 14, 343-346.	2.5	50
50	On Caputo–Hadamard fractional differential equations. International Journal of Computer Mathematics, 2020, 97, 1459-1483.	1.8	46
51	Finite difference method for time-space-fractional Schrödinger equation. International Journal of Computer Mathematics, 2015, 92, 1439-1451.	1.8	43
52	Numerical Solution of Fractional Diffusion-Wave Equation. Numerical Functional Analysis and Optimization, 2016, 37, 19-39.	1.4	43
53	Pinning adaptive anti-synchronization between two general complex dynamical networks with non-delayed and delayed coupling. Applied Mathematics and Computation, 2012, 218, 7445-7452.	2.2	42
54	Stability and Logarithmic Decay of the Solution to Hadamard-Type Fractional Differential Equation. Journal of Nonlinear Science, 2021, 31, 1.	2.1	41

#	Article	IF	CITATIONS
55	Adaptive Synchronization of Fractional Neural Networks with Unknown Parameters and Time Delays. Entropy, 2014, 16, 6286-6299.	2.2	40
56	Finite Difference Methods for Caputo–Hadamard Fractional Differential Equations. Mediterranean Journal of Mathematics, 2020, 17, 1.	0.8	39
57	Mathematical Analysis and the Local Discontinuous Galerkin Method for Caputo–Hadamard Fractional Partial Differential Equation. Journal of Scientific Computing, 2020, 85, 1.	2.3	38
58	Generalized projective synchronization of chaos: The cascade synchronization approach. Chaos, Solitons and Fractals, 2006, 30, 140-146.	5.1	37
59	A necessary condition of projective synchronization in discrete-time systems of arbitrary dimensions. Chaos, Solitons and Fractals, 2004, 22, 175-180.	5.1	34
60	Numerics for the fractional Langevin equation driven by the fractional Brownian motion. Fractional Calculus and Applied Analysis, 2013, 16, 123-141.	2.2	34
61	On the Marotto–Li–Chen theorem and its application to chaotification of multi-dimensional discrete dynamical systems. Chaos, Solitons and Fractals, 2003, 18, 807-817.	5.1	32
62	Mixed spline function method for reaction–subdiffusion equations. Journal of Computational Physics, 2013, 242, 103-123.	3.8	32
63	BIFURCATIONS OF A HOLLING-TYPE II PREDATOR–PREY SYSTEM WITH CONSTANT RATE HARVESTING. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2009, 19, 2499-2514.	1.7	31
64	The finite difference method for Caputo-type parabolic equation with fractional Laplacian: One-dimension case. Chaos, Solitons and Fractals, 2017, 102, 319-326.	5.1	31
65	A High-Order Accurate Numerical Scheme for the Caputo Derivative with Applications to Fractional Diffusion Problems. Numerical Functional Analysis and Optimization, 2018, 39, 600-622.	1.4	30
66	Numerical Approaches to Fractional Integrals and Derivatives: A Review. Mathematics, 2020, 8, 43.	2.2	30
67	Asymptotical Stability of Nonlinear Fractional Differential System with Caputo Derivative. International Journal of Differential Equations, 2011, 2011, 1-12.	0.8	29
68	Fractional calculus and its applications. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20130037.	3.4	29
69	High-Order Algorithms for Riesz Derivative and Their Applications <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mo stretchy="false">(<mml:mi>I</mml:mi><mml:mo stretchy="false">)</mml:mo>. Abstract and Applied Analysis 2014 2014 1-17</mml:mo </mml:math 	0.7	29
70	A new Crank–Nicolson finite element method for the time-fractional subdiffusion equation. Applied Numerical Mathematics, 2017, 121, 82-95.	2.1	29
71	A novel compact ADI scheme for the time-fractional subdiffusion equation in two space dimensions. International Journal of Computer Mathematics, 2016, 93, 889-914.	1.8	27
72	On the bound of the Lyapunov exponents for continuous systems. Chaos, 2004, 14, 557-561.	2.5	26

#	Article	IF	CITATIONS
73	Impulsive synchronization of fractional Takagi-Sugeno fuzzy complex networks. Chaos, 2016, 26, 084311.	2.5	26
74	Highâ€order compact difference schemes for the modified anomalous subdiffusion equation. Numerical Methods for Partial Differential Equations, 2016, 32, 213-242.	3.6	26
75	An H2N2 Interpolation for Caputo Derivative with Order in (1, 2) and Its Application to Time-Fractional Wave Equations in More Than One Space Dimension. Journal of Scientific Computing, 2020, 83, 1.	2.3	26
76	The Blow-Up and Global Existence of Solution to Caputo–Hadamard Fractional Partial Differential Equation with Fractional Laplacian. Journal of Nonlinear Science, 2021, 31, 1.	2.1	25
77	Numerical approaches to Caputo–Hadamard fractional derivatives with applications to long-term integration of fractional differential systems. Communications in Nonlinear Science and Numerical Simulation, 2022, 106, 106096.	3.3	25
78	Highâ€order algorithms for Riesz derivative and their applications (V). Numerical Methods for Partial Differential Equations, 2017, 33, 1754-1794.	3.6	24
79	On Finite Part Integrals and Hadamard-Type Fractional Derivatives. Journal of Computational and Nonlinear Dynamics, 2018, 13, .	1.2	24
80	The asymptotics of the solutions to the anomalous diffusion equations. Computers and Mathematics With Applications, 2013, 66, 682-692.	2.7	23
81	The discontinuous Galerkin finite element method for Caputo-type nonlinear conservation law. Mathematics and Computers in Simulation, 2020, 169, 51-73.	4.4	23
82	High-Order Approximation to Caputo Derivatives and Caputo-type Advection–Diffusion Equations: Revisited. Numerical Functional Analysis and Optimization, 2017, 38, 861-890.	1.4	22
83	A High-Order Algorithm for Time-Caputo-Tempered Partial Differential Equation with Riesz Derivatives in Two Spatial Dimensions. Journal of Scientific Computing, 2019, 80, 81-109.	2.3	22
84	The local discontinuous Galerkin finite element methods for Caputo-type partial differential equations: Mathematical analysis. Applied Numerical Mathematics, 2020, 150, 587-606.	2.1	22
85	A Fully Discrete Discontinuous Galerkin Method for Nonlinear Fractional Fokker-Planck Equation. Mathematical Problems in Engineering, 2010, 2010, 1-26.	1.1	21
86	Compact difference method for solving the fractional reaction–subdiffusion equation with Neumann boundary value condition. International Journal of Computer Mathematics, 2015, 92, 167-180.	1.8	21
87	Synchronization of fractional fuzzy cellular neural networks with interactions. Chaos, 2017, 27, 103106.	2.5	21
88	A numerical approach to the generalized nonlinear fractional Fokker–Planck equation. Computers and Mathematics With Applications, 2012, 64, 3075-3089.	2.7	20
89	Equivalent system for a multiple-rational-order fractional differential system. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20120156.	3.4	20
90	Center Manifold of Fractional Dynamical System. Journal of Computational and Nonlinear Dynamics, 2016, 11, .	1.2	20

#	Article	IF	CITATIONS
91	Fractional-compact numerical algorithms for Riesz spatial fractional reaction-dispersion equations. Fractional Calculus and Applied Analysis, 2017, 20, 722-764.	2.2	20
92	Fractional Convection. Journal of Computational and Nonlinear Dynamics, 2018, 13, .	1.2	20
93	Asymptotic behaviours of solution to Caputo–Hadamard fractional partial differential equation with fractional Laplacian. International Journal of Computer Mathematics, 2021, 98, 305-339.	1.8	20
94	EXISTENCE AND CONTINUATION THEOREMS OF RIEMANN–LIOUVILLE TYPE FRACTIONAL DIFFERENTIAL EQUATIONS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2012, 22, 1250077.	1.7	18
95	Chaotic vibration in fractional maps. JVC/Journal of Vibration and Control, 2014, 20, 964-972.	2.6	18
96	On super-chaotifying discrete dynamical systems. Chaos, Solitons and Fractals, 2004, 21, 855-861.	5.1	17
97	SYNCHRONIZATION INSIDE COMPLEX DYNAMICAL NETWORKS WITH DOUBLE TIME-DELAYS AND NONLINEAR INNER-COUPLING FUNCTIONS. International Journal of Modern Physics B, 2011, 25, 1531-1541.	2.0	17
98	L1/LDG method for the generalized time-fractional Burgers equation. Mathematics and Computers in Simulation, 2021, 187, 357-378.	4.4	17
99	Modeling and Computing of Fractional Convection Equation. Communications on Applied Mathematics and Computation, 2019, 1, 565-595.	1.7	16
100	On the Hadamard Type Fractional Differential System. , 2012, , 159-171.		16
101	Lyapunov–Schmidt Reduction for Fractional Differential Systems. Journal of Computational and Nonlinear Dynamics, 2016, 11, .	1.2	15
102	Finite Difference Method for Two-Dimensional Nonlinear Time-Fractional Subdiffusion Equation. Fractional Calculus and Applied Analysis, 2018, 21, 1046-1072.	2.2	15
103	Regularity of the solution to Riesz-type fractional differential equation. Integral Transforms and Special Functions, 2019, 30, 711-742.	1.2	15
104	Stability of N-Dimensional Linear Systems with Multiple Delays and Application to Synchronization. Journal of Systems Science and Complexity, 2006, 19, 149-156.	2.8	14
105	Asymptotically compatible schemes for space-time nonlocal diffusion equations. Chaos, Solitons and Fractals, 2017, 102, 361-371.	5.1	14
106	Stability and <i>'ı̈</i> -algebraic decay of the solution to <i>'ı̈</i> -fractional differential system. International Journal of Nonlinear Sciences and Numerical Simulation, 2023, 24, 695-733.	1.0	14
107	BIFURCATION ANALYSIS OF THE KURAMOTO–SIVASHINSKY EQUATION IN ONE SPATIAL DIMENSION. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2001, 11, 2493-2499.	1.7	13
108	Numerical Algorithms for the Fractional Diffusion-Wave Equation with Reaction Term. Abstract and Applied Analysis, 2013, 2013, 1-15.	0.7	13

#	Article ing the distributions < mml:math altimg="sil.gif" overflow="scroll" xmins:xocs="http://www.elsevier.com/xml/xocs/dtd" xmins:xs="http://www.w3.org/2001/XiViLSchema"	IF	CITATIONS
109	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd"	2.2	13
110	xmlns:ce="http://www.elsevier.com/x SCALING ATTRACTORS OF FRACTIONAL DIFFERENTIAL SYSTEMS. Fractals, 2006, 14, 303-313.	3.7	12
111	Non-uniform L1/discontinuous Galerkin approximation for the time-fractional convection equation with weak regular solution. Mathematics and Computers in Simulation, 2021, 182, 838-857.	4.4	12
112	The finite difference method for Caputo-type parabolic equation with fractional Laplacian: more than one space dimension. International Journal of Computer Mathematics, 2018, 95, 1114-1130.	1.8	11
113	Several Results of Fractional Differential and Integral Equations in Distribution. Mathematics, 2018, 6, 97.	2.2	11
114	Numerical Methods for the Time Fractional Convection-Diffusion-Reaction Equation. Numerical Functional Analysis and Optimization, 2021, 42, 1115-1153.	1.4	11
115	A new method of determining chaos-parameter-region for the tent map. Chaos, Solitons and Fractals, 2004, 21, 863-867.	5.1	10
116	High-order numerical approximation formulas for Riemann–Liouville (Riesz) tempered fractional derivatives: Construction and application (II). Applied Mathematics Letters, 2018, 86, 208-214.	2.7	10
117	Synchronization in Tempered Fractional Complex Networks via Auxiliary System Approach. Complexity, 2019, 2019, 1-12.	1.6	10
118	BIFURCATION FROM AN EQUILIBRIUM OF THE STEADY STATE KURAMOTO–SIVASHINSKY EQUATION IN TWO SPATIAL DIMENSIONS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2002, 12, 103-114.	1.7	9
119	Synchronization Analysis of Two Coupled Complex Networks with Time Delays. Discrete Dynamics in Nature and Society, 2011, 2011, 1-12.	0.9	9
120	A new second-order midpoint approximation formula for Riemann–Liouville derivative: algorithm and its application. IMA Journal of Applied Mathematics, 2017, 82, 909-944.	1.6	9
121	COMPARISON PRINCIPLES FOR HADAMARD-TYPE FRACTIONAL DIFFERENTIAL EQUATIONS. Fractals, 2018, 26, 1850056.	3.7	9
122	Remarks on the Generalized Fractional Laplacian Operator. Mathematics, 2019, 7, 320.	2.2	9
123	Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete and Continuous Dynamical Systems - Series S, 2021, 14, 3659.	1.1	9
124	Numerical Fractional-Calculus Model for Two-Phase Flow in Fractured Media. Advances in Mathematical Physics, 2013, 2013, 1-7.	0.8	8
125	Advanced Topics in Fractional Dynamics. Advances in Mathematical Physics, 2013, 2013, 1-1.	0.8	8
126	Numerical algorithms for the timeâ€Caputo and spaceâ€Riesz fractional Blochâ€Torrey equations. Numerical Methods for Partial Differential Fourtions, 2020, 36, 772-799	3.6	8

#	Article	IF	CITATIONS
127	BIFURCATIONS OF ONE-DIMENSIONAL REACTION–DIFFUSION EQUATIONS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2001, 11, 1295-1306.	1.7	6
128	A NOTE ON BIFURCATION CONTROL. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2003, 13, 667-669.	1.7	6
129	Symmetry-breaking bifurcation in O(2)×O(2)-symmetric nonlinear large problems and its application to the Kuramoto–Sivashinsky equation in two spatial dimensions. Chaos, Solitons and Fractals, 2004, 22, 451-468.	5.1	6
130	An alternating direction Galerkin method for a time-fractional partial differential equation with damping in two space dimensions. Advances in Difference Equations, 2017, 2017, .	3.5	6
131	High-order algorithms for riesz derivative and their applications (IV). Fractional Calculus and Applied Analysis, 2019, 22, 1537-1560.	2.2	6
132	An Estimate of the Bound of the Lyapunov Exponents for Caputo–Hadamard Fractional Differential System. Journal of Computational and Nonlinear Dynamics, 2021, 16, .	1.2	6
133	ON THE FRACTIONAL MEAN-VALUE THEOREM. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2012, 22, 1250104.	1.7	5
134	Chaos in fractional difference equation. , 2012, , .		5
135	Gronwall inequalities. Interdisciplinary Mathematical Sciences, 2013, , 1-22.	0.4	5
136	Determination of Coefficients of High-Order Schemes for Riemann-Liouville Derivative. Scientific World Journal, The, 2014, 2014, 1-21.	2.1	5
137	Remarks on fractional derivatives of distributions*. Tbilisi Mathematical Journal, 2017, 10, .	0.3	5
138	Numerical simulation of the fractional Langevin equation. Thermal Science, 2012, 16, 357-363.	1.1	5
139	Which Kind ofÂFractional Partial Differential Equations Has Solution withÂExponential Asymptotics?. Lecture Notes in Networks and Systems, 2022, , 112-117.	0.7	5
140	Bifurcation and stability of nontrivial solution to kuramoto-sivashinsky equation. Journal of Shanghai University, 1997, 1, 95-97.	0.1	4
141	Computation of universal unfolding of the double zero bifurcation in theZ2-symmetric system. International Journal of Computer Mathematics, 2014, 91, 461-479.	1.8	4
142	Approximation to Hadamard Derivative via the Finite Part Integral. Entropy, 2018, 20, 983.	2.2	4
143	Hopf Bifurcation of a Delayed Predator–Prey Model with Nonconstant Death Rate and Constant-Rate Prey Harvesting. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2018, 28, 1850179.	1.7	4
144	Finite-time stability analysis of fractional differential systems with variable coefficients. Chaos, 2019, 29, 013110.	2.5	4

#	Article	IF	CITATIONS
145	Applications of generalized fractional hemivariational inequalities in solid viscoelastic contact mechanics. Communications in Nonlinear Science and Numerical Simulation, 2022, 115, 106718.	3.3	4
146	SCALING CHEN'S ATTRACTOR. Modern Physics Letters B, 2006, 20, 633-639.	1.9	3
147	SYNCHRONIZATION OF LIMIT SETS. Modern Physics Letters B, 2007, 21, 551-558.	1.9	3
148	Remarks on the initialization of Caputo derivative. , 2012, , .		3
149	Finite difference scheme for the time-space fractional diffusion equations. Open Physics, 2013, 11, .	1.7	3
150	Numerical approach to the Caputo derivative of the unknown function. Open Physics, 2013, 11, .	1.7	3
151	Finite element methods for fractional differential equations. Interdisciplinary Mathematical Sciences, 2013, , 49-68.	0.4	3
152	Preface: Recent Advances in Fractional Dynamics. Chaos, 2016, 26, 084101.	2.5	3
153	Hopf Bifurcation in a Delayed Diffusive Leslie–Gower Predator–Prey Model with Herd Behavior. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2019, 29, 1950055.	1.7	3
154	Weak convergence of the L1 scheme for a stochastic subdiffusion problem driven by fractionally integrated additive noise. Applied Numerical Mathematics, 2022, 178, 192-215.	2.1	3
155	Synchronization in Delayed Discrete-time Complex Networks. , 2006, , .		2
156	HOPF BIFURCATION OF A DELAYED DIFFERENTIAL EQUATION. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2007, 17, 1367-1374.	1.7	2
157	Multi-UAV-based optimal crop-dusting of anomalously diffusing infestation of crops. , 2015, , .		2
158	Preface to the Focused Issue on Fractional Derivatives and General Nonlocal Models. Communications on Applied Mathematics and Computation, 2019, 1, 503-504.	1.7	2
159	L1/LDG Method for the Generalized Time-Fractional Burgers Equation in Two Spatial Dimensions. Communications on Applied Mathematics and Computation, 2023, 5, 1299-1322.	1.7	2
160	Attractors for one kind of lattice dynamical system. Computers and Mathematics With Applications, 2007, 54, 617-626.	2.7	1
161	Stability analysis of the fractional differential systems with Miller-Ross sequential derivative. , 2010, , •		1
162	Numerical algorithm based on fast convolution for fractional calculus. Thermal Science, 2012, 16, 365-371.	1.1	1

#	Article	IF	CITATIONS
163	FCAA special issue – In memory of late professor Wen Chen (FCAA–Volume 22–6–2019). Fractional Calculus and Applied Analysis, 2019, 22, 1437-1448.	2.2	1
164	The fractional Green's function by Babenko's approach. Tbilisi Mathematical Journal, 2020, 13, .	0.3	1
165	Difference Between Riesz Derivative and Fractional Laplacian on the Proper Subset of â"• Fractional Calculus and Applied Analysis, 2021, 24, 1716-1734.	2.2	1
166	Chaotic attractor of the controlled HeËŠnon map. , 0, , .		0
167	A numerical approach to hopf bifurcation points. Journal of Shanghai University, 1998, 2, 182-185.	0.1	0
168	On the modified Marotto Theorem. , 0, , .		0
169	On Suppression of Bifurcations in Continuous Dynamical Systems. , 2006, , .		0
170	The finite element method for the generalized space fractional Fokker-Planck equation. , 2010, , .		0
171	Mean first passage time of random walks on deterministic recursive trees. , 2012, , .		0
172	Existence and uniqueness of the solutions to the fractional differential equations. Interdisciplinary Mathematical Sciences, 2013, , 23-48.	0.4	0
173	Analysis of Fractional Dynamic Systems. Scientific World Journal, The, 2014, 2014, 1-2.	2.1	0