Luis Salvatella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8143877/publications.pdf

Version: 2024-02-01

32	1,070	19	32
papers	citations	h-index	g-index
33	33	33	1231
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Theoretical insight on the treatment of \hat{l}^2 -hexachlorocyclohexane waste through alkaline dehydrochlorination. Scientific Reports, 2021, 11, 8777.	3.3	7
2	A DFT study on the mechanism of the sulfonic acid + alcohol esterification reaction. RSC Advances, 2018, 8, 3828-3832.	3.6	4
3	Role of Substituents in the Solid Acid-Catalyzed Cleavage of the \hat{I}^2 -O-4 Linkage in Lignin Models. ACS Sustainable Chemistry and Engineering, 2018, 6, 1837-1847.	6.7	29
4	Copper-catalyzed cyclopropanation reaction of but-2-ene. Journal of Molecular Modeling, 2018, 24, 195.	1.8	9
5	Theoretical Study on the BF ₃ -Catalyzed Meinwald Rearrangement Reaction. Journal of Organic Chemistry, 2014, 79, 5993-5999.	3.2	40
6	General Procedure for the Easy Calculation of pH in an Introductory Course of General or Analytical Chemistry. Journal of Chemical Education, 2014, 91, 524-530.	2.3	6
7	Stereochemical Outcome of Copper-Catalyzed C–H Insertion Reactions. An Experimental and Theoretical Study. Journal of Organic Chemistry, 2013, 78, 5851-5857.	3.2	17
8	A Theoretical Insight into the Mechanism of the Silverâ€Catalysed Transsiliranation Reaction. European Journal of Organic Chemistry, 2010, 2010, 1231-1234.	2.4	15
9	Theoretical Insights into Enantioselective Catalysis: The Mechanism of the Kharasch–Sosnovsky Reaction. Chemistry - A European Journal, 2008, 14, 9274-9285.	3.3	69
10	Complete Characterization of a Chiral Lewis Acidâ^'Product Complex for the Enantioselective Dielsâ^'Alder Reaction between Methacrolein and Cyclopentadiene:  Mechanistic Considerations. Organometallics, 2007, 26, 6493-6496.	2.3	15
11	Conformational Preferences of Methacrolein in Dielsâ^Alder and 1,3-Dipolar Cycloaddition Reactions. Journal of Organic Chemistry, 2006, 71, 9831-9840.	3.2	35
12	The Source of theendoRule in the Dielsâ^Alder Reaction: Are Secondary Orbital Interactions Really Necessary?. European Journal of Organic Chemistry, 2005, 2005, 85-90.	2.4	34
13	Asymmetric versusC2-Symmetric Ligands: Origin of the Enantioselectivity in Ruthenium-Pybox-Catalyzed Cyclopropanation Reactions. Angewandte Chemie - International Edition, 2005, 44, 458-461.	13.8	27
14	Computational Mechanistic Studies on Enantioselective pyboxâ^'Ruthenium-Catalyzed Cyclopropanation Reactions. Organometallics, 2005, 24, 3448-3457.	2.3	19
15	Solvent Effects on the 9-Hydroxymethylanthracene +N-Ethylmaleimide Dielsâ^'Alder Reaction. A Theoretical Study. Journal of Organic Chemistry, 2005, 70, 1456-1458.	3.2	12
16	Theoretical Insights into the Role of a Counterion in Copper-Catalyzed Enantioselective Cyclopropanation Reactions. Chemistry - A European Journal, 2004, 10, 758-765.	3.3	60
17	Experimental and Theoretical Studies on Structureâ°'Reactivity Relationships of Titanium-Modified Silicas in the Hydrogen Peroxide-Promoted Oxidation of Cyclohexene. Journal of Physical Chemistry B, 2003, 107, 519-526.	2.6	22
18	Theoretical (DFT) Insights into the Mechanism of Copper-Catalyzed Cyclopropanation Reactions. Implications for Enantioselective Catalysis. Journal of the American Chemical Society, 2001, 123, 7616-7625.	13.7	176

#	Article	IF	CITATIONS
19	Tandem Dielsâ-Alder Aromatization Reactions of Furans under Unconventional Reaction Conditions â- Experimental and Theoretical Studies. European Journal of Organic Chemistry, 2001, 2001, 2891.	2.4	32
20	Do Secondary Orbital Interactions Really Exist?. Accounts of Chemical Research, 2000, 33, 658-664.	15.6	153
21	Theoretical evidence of a feasible concerted antara–antara cycloaddition. Chemical Communications, 1999, , 903-904.	4.1	1
22	On the Nature of the Lewis Acid Sites of Aluminum-Modified Silica. A Theoretical and Experimental Study. Journal of Physical Chemistry B, 1999, 103, 1664-1670.	2.6	12
23	A Density Functional Study on the Coordination of Aldehydes to N-Sulfonyl 1,3,2-Oxazaborolidin-5-one. Journal of the American Chemical Society, 1999, 121, 10772-10780.	13.7	15
24	Combined AM1/MM3 computations on organic systems: the Diels–Alder reaction as a test case. Chemical Physics Letters, 1998, 296, 239-244.	2.6	7
25	The Role of Menthyl Group in Catalyzed Asymmetric Dielsâ^Alder Reactions. A Combined Quantum Mechanics/Molecular Mechanics Study. Journal of Organic Chemistry, 1998, 63, 4664-4670.	3.2	15
26	Solvent effects on Diels-Alder reactions. The use of aqueous mixtures of fluorinated alcohols and the study of reactions of acrylonitrile. Journal of the Chemical Society Perkin Transactions II, 1997, , 653.	0.9	78
27	An Ab Initio Study on the Conformational and Endo/exo Preferences of Acrylates in Diels-Alder Reactions. Tetrahedron, 1997, 53, 6057-6064.	1.9	23
28	Is It $[4+2]$ or $[2+4]$? A New Look at Lewis Acid Catalyzed Dielsâ-'Alder Reactions. Journal of the American Chemical Society, 1996, 118, 11680-11681.	13.7	24
29	On the conformational preferences of \hat{l}_{\pm},\hat{l}^2 -unsaturated carbonyl compounds. An ab initio study. Computational and Theoretical Chemistry, 1996, 362, 187-197.	1.5	20
30	Solvent effects on Diels-Alder reactions. A semi-empirical study. Computational and Theoretical Chemistry, 1995, 331, 37-50.	1.5	27
31	Solvent effects on endo/exo- and regio-selectivities of Diels–Alder reactions of carbonyl-containing dienophiles. Journal of the Chemical Society Perkin Transactions II, 1994, , 847-851.	0.9	40
32	On the role of hexafluoroisopropanol in Diels–Alder reactions of acid-sensitive reagents. Canadian Journal of Chemistry, 1994, 72, 308-311.	1.1	27