
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8143493/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Surface plasmon resonance in gold nanoparticles: a review. Journal of Physics Condensed Matter, 2017, 29, 203002.	1.8	1,184
2	ExBox: A Polycyclic Aromatic Hydrocarbon Scavenger. Journal of the American Chemical Society, 2013, 135, 183-192.	13.7	275
3	Surface Plasmon Resonance Analysis of Antibiotics Using Imprinted Boronic Acid-Functionalized Au Nanoparticle Composites. Analytical Chemistry, 2010, 82, 2512-2519.	6.5	183
4	Electron Sharing and Anion–π Recognition in Molecular Triangular Prisms. Angewandte Chemie - International Edition, 2013, 52, 13100-13104.	13.8	160
5	A Radically Configurable Six-State Compound. Science, 2013, 339, 429-433.	12.6	158
6	Stimulated Release of Size‣elected Cargos in Succession from Mesoporous Silica Nanoparticles. Angewandte Chemie - International Edition, 2012, 51, 5460-5465.	13.8	157
7	Selective isolation of gold facilitated by second-sphere coordination with α-cyclodextrin. Nature Communications, 2013, 4, 1855.	12.8	156
8	Complexation of Polyoxometalates with Cyclodextrins. Journal of the American Chemical Society, 2015, 137, 4111-4118.	13.7	150
9	Protein immobilization at gold–thiol surfaces and potential for biosensing. Analytical and Bioanalytical Chemistry, 2010, 398, 1545-1564.	3.7	132
10	Ultrafast Photoinduced Symmetry-Breaking Charge Separation and Electron Sharing in Perylenediimide Molecular Triangles. Journal of the American Chemical Society, 2015, 137, 13236-13239.	13.7	130
11	Photoexpulsion of Surface-Grafted Ruthenium Complexes and Subsequent Release of Cytotoxic Cargos to Cancer Cells from Mesoporous Silica Nanoparticles. Journal of the American Chemical Society, 2013, 135, 11603-11613.	13.7	128
12	Multifunctional Au Nanoparticle Dendrimer-Based Surface Plasmon Resonance Biosensor and Its Application for Improved Insulin Detection. Analytical Chemistry, 2010, 82, 7335-7342.	6.5	126
13	Electron Delocalization in a Rigid Cofacial Naphthaleneâ€1,8:4,5â€bis(dicarboximide) Dimer. Angewandte Chemie - International Edition, 2014, 53, 9476-9481.	13.8	122
14	Redox Switchable Daisy Chain Rotaxanes Driven by Radical–Radical Interactions. Journal of the American Chemical Society, 2014, 136, 4714-4723.	13.7	122
15	Relative Unidirectional Translation in an Artificial Molecular Assembly Fueled by Light. Journal of the American Chemical Society, 2013, 135, 18609-18620.	13.7	112
16	Introducing Stable Radicals into Molecular Machines. ACS Central Science, 2017, 3, 927-935.	11.3	102
17	Kinetic and biochemical properties of high and low redox potential laccases from fungal and plant origin. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 899-908.	2.3	101
18	Esterase- and pH-responsive poly(l̂2-amino ester)-capped mesoporous silica nanoparticles for drug delivery. Nanoscale, 2015, 7, 7178-7183.	5.6	75

MARCO FRASCONI

#	Article	IF	CITATIONS
19	Multiâ€Functionalized Carbon Nanoâ€onions as Imaging Probes for Cancer Cells. Chemistry - A European Journal, 2015, 21, 19071-19080.	3.3	74
20	Energetically Demanding Transport in a Supramolecular Assembly. Journal of the American Chemical Society, 2014, 136, 14702-14705.	13.7	72
21	NIR fluorescence labelled carbon nano-onions: synthesis, analysis and cellular imaging. Journal of Materials Chemistry B, 2014, 2, 7459-7463.	5.8	70
22	Following the Biocatalytic Activities of Glucose Oxidase by Electrochemically Cross-Linked Enzymeâ^'Pt Nanoparticles Composite Electrodes. Analytical Chemistry, 2008, 80, 8253-8259.	6.5	69
23	Folding of Oligoviologens Induced by Radical–Radical Interactions. Journal of the American Chemical Society, 2015, 137, 876-885.	13.7	65
24	Stereoselective and Chiroselective Surface Plasmon Resonance (SPR) Analysis of Amino Acids by Molecularly Imprinted Auâ€Nanoparticle Composites. Chemistry - A European Journal, 2010, 16, 7114-7120.	3.3	64
25	Surface plasmon resonance immunosensor for cortisol and cortisone determination. Analytical and Bioanalytical Chemistry, 2009, 394, 2151-2159.	3.7	63
26	An Electrochemically and Thermally Switchable Donor–Acceptor [<i>c</i> 2]Daisy Chain Rotaxane. Angewandte Chemie - International Edition, 2014, 53, 1953-1958.	13.8	62
27	Redox Control of the Binding Modes of an Organic Receptor. Journal of the American Chemical Society, 2015, 137, 11057-11068.	13.7	55
28	Non-covalent functionalization of carbon nano-onions with pyrene–BODIPY dyads for biological imaging. RSC Advances, 2015, 5, 50253-50258.	3.6	51
29	Ï€-Dimerization of viologen subunits around the core of C60 from twelve to six directions. Chemical Science, 2013, 4, 1462.	7.4	47
30	Mechanical Bonds and Topological Effects in Radical Dimer Stabilization. Journal of the American Chemical Society, 2014, 136, 11011-11026.	13.7	47
31	Oligorotaxane Radicals under Orders. ACS Central Science, 2016, 2, 89-98.	11.3	47
32	Mechanically induced intramolecular electron transfer in a mixed-valence molecular shuttle. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11546-11551.	7.1	46
33	Electrochemically Stimulated pH Changes: A Route To Control Chemical Reactivity. Journal of the American Chemical Society, 2010, 132, 2029-2036.	13.7	44
34	Electrified Selective "Sponges―Made of Au Nanoparticles. Journal of the American Chemical Society, 2010, 132, 9373-9382.	13.7	43
35	Electrochemical Switching of a Fluorescent Molecular Rotor Embedded within a Bistable Rotaxane. Journal of the American Chemical Society, 2020, 142, 11835-11846.	13.7	43
36	Electrochemical evaluation of electron transfer kinetics of high and low redox potential laccases on gold electrode surface. Electrochimica Acta, 2010, 56, 817-827.	5.2	41

#	Article	IF	CITATIONS
37	A Squareâ€Planar Tetracoordinate Oxygenâ€Containing Ti ₄ O ₁₇ Cluster Stabilized by Two 1,1′â€Ferrocenedicarboxylato Ligands. Angewandte Chemie - International Edition, 2014, 53, 9193-9197.	13.8	41
38	Sugar and pH dual-responsive mesoporous silica nanocontainers based on competitive binding mechanisms. Nanoscale, 2015, 7, 1067-1072.	5.6	41
39	Electronâ€Transfer Kinetics of Microperoxidaseâ€11 Covalently Immobilised onto the Surface of Multiâ€Walled Carbon Nanotubes by Reactive Landing of Massâ€Selected Ions. Chemistry - A European Journal, 2009, 15, 7359-7367.	3.3	40
40	Highly surface functionalized carbon nano-onions for bright light bioimaging. Methods and Applications in Fluorescence, 2015, 3, 044005.	2.3	40
41	New Methods for Improved Characterization of Silica Nanoparticle-Based Drug Delivery Systems. Langmuir, 2013, 29, 15386-15393.	3.5	39
42	Soft-Landed Protein Voltammetry: A Tool for Redox Protein Characterization. Analytical Chemistry, 2008, 80, 5937-5944.	6.5	35
43	Highlyâ€Ordered Covalent Anchoring of Carbon Nanotubes on Electrode Surfaces by Diazonium Salt Reactions. Angewandte Chemie - International Edition, 2011, 50, 3457-3461.	13.8	35
44	A Neutral Naphthalene Diimide [2]Rotaxane. Organic Letters, 2012, 14, 5188-5191.	4.6	34
45	Selenium speciation in foods: Preliminary results on potatoes. Microchemical Journal, 2007, 85, 222-227.	4.5	33
46	Sliding-Ring Catenanes. Journal of the American Chemical Society, 2016, 138, 10214-10225.	13.7	33
47	Solid-State Characterization and Photoinduced Intramolecular Electron Transfer in a Nanoconfined Octacationic Homo[2]Catenane. Journal of the American Chemical Society, 2014, 136, 10569-10572.	13.7	32
48	Laccase–polyazetidine prepolymer–MWCNT integrated system: Biochemical properties and application to analytical determinations in real samples. Microchemical Journal, 2010, 96, 301-307.	4.5	31
49	Electrochemically Controlled Assembly and Logic Gates Operations of Gold Nanoparticle Arrays. Langmuir, 2012, 28, 3322-3331.	3.5	30
50	γ-Cyclodextrin Cuprate Sandwich-Type Complexes. Inorganic Chemistry, 2013, 52, 2854-2861.	4.0	29
51	Influence of Constitution and Charge on Radical Pairing Interactions in Tris-radical Tricationic Complexes. Journal of the American Chemical Society, 2016, 138, 8288-8300.	13.7	29
52	Porous graphite oxide pillared with tetrapod-shaped molecules. Carbon, 2017, 120, 145-156.	10.3	29
53	Redox-Controlled Selective Docking in a [2]Catenane Host. Journal of the American Chemical Society, 2013, 135, 2466-2469.	13.7	27
54	Photo-Responsive Graphene and Carbon Nanotubes to Control and Tackle Biological Systems. Frontiers in Chemistry, 2018, 6, 102.	3.6	27

#	Article	IF	CITATIONS
55	Azurin modulates the association of Mdm2 with p53: SPR evidence from interaction of the fullâ€length proteins. Journal of Molecular Recognition, 2011, 24, 707-714.	2.1	26
56	Relative contractile motion of the rings in a switchable palindromic [3]rotaxane in aqueous solution driven by radical-pairing interactions. Organic and Biomolecular Chemistry, 2014, 12, 6089-6093.	2.8	25
57	Soft landed protein voltammetry. Chemical Communications, 2007, , 3494.	4.1	23
58	Electrochemical Kinetic Characterization of Redox Mediated Glucose Oxidase Reactions: A Simplified Approach. Electroanalysis, 2008, 20, 163-169.	2.9	23
59	Chemically Modified Multiwalled Carbon Nanotubes Electrodes with Ferrocene Derivatives through Reactive Landing. Journal of Physical Chemistry C, 2011, 115, 4863-4871.	3.1	23
60	Controlling association kinetics in the formation of donor–acceptor pseudorotaxanes. Tetrahedron Letters, 2015, 56, 3591-3594.	1.4	22
61	Neighboring Component Effect in a Tri-stable [2]Rotaxane. Journal of the American Chemical Society, 2018, 140, 13827-13834.	13.7	22
62	Kinetic and redox properties of MnP II, a major manganese peroxidase isoenzyme from Panus tigrinus CBS 577.79. Journal of Biological Inorganic Chemistry, 2009, 14, 1153-1163.	2.6	21
63	Polyazetidine-based immobilization of redox proteins for electron-transfer-based biosensors. Biosensors and Bioelectronics, 2009, 24, 1424-1430.	10.1	21
64	Ferrocenyl Alkanethiolsâ^'Thio β-Cyclodextrin Mixed Self-Assembled Monolayers: Evidence of Ferrocene Electron Shuttling Through the β-Cyclodextrin Cavity. Langmuir, 2009, 25, 12937-12944.	3.5	21
65	Nanozyme–Cellulose Hydrogel Composites Enabling Cascade Catalysis for the Colorimetric Detection of Glucose. ACS Applied Nano Materials, 2022, 5, 13845-13853.	5.0	20
66	Formation of ring-in-ring complexes between crown ethers and rigid TVBox ⁸⁺ . Chemical Communications, 2015, 51, 1432-1435.	4.1	19
67	Mixed-Valence Superstructure Assembled from a Mixed-Valence Host–Guest Complex. Journal of the American Chemical Society, 2018, 140, 9387-9391.	13.7	18
68	Wiring of Redox Enzymes on Three Dimensional Self-Assembled Molecular Scaffold. Langmuir, 2011, 27, 12606-12613.	3.5	17
69	Internalization of Carbon Nano-onions by Hippocampal Cells Preserves Neuronal Circuit Function and Recognition Memory. ACS Applied Materials & Interfaces, 2018, 10, 16952-16963.	8.0	17
70	Nanostructured materials based on the integration of ferrocenyl-tethered dendrimer and redox proteins on self-assembled monolayers: an efficient biosensor interface. Nanotechnology, 2009, 20, 505501.	2.6	14
71	Spatially Oriented and Reversible Surface Assembly of Singleâ€Walled Carbon Nanotubes: A Strategy Based on π–Ĩ€ Interactions. Angewandte Chemie - International Edition, 2011, 50, 7074-7078.	13.8	14
72	Patterned Assembly of Quantum Dots onto Surfaces Modified with Click Microcontact Printing. Advanced Materials, 2013, 25, 223-226.	21.0	14

#	Article	IF	CITATIONS
73	Insights into the Gelation Mechanism of Metal-Coordinated Hydrogels by Paramagnetic NMR Spectroscopy and Molecular Dynamics. Macromolecules, 2022, 55, 450-461.	4.8	14
74	Photocurrent generation from a low band-gap and green BODIPY-based electrochromic polymer. Synthetic Metals, 2014, 197, 52-57.	3.9	12
75	Interaction of ERp57 with calreticulin: Analysis of complex formation and effects of vancomycin. Biophysical Chemistry, 2012, 160, 46-53.	2.8	10
76	Quantum Mechanical and Experimental Validation that Cyclobis(paraquatâ€ <i>p</i> â€phenylene) Forms a 1:1 Inclusion Complex with Tetrathiafulvalene. Chemistry - A European Journal, 2016, 22, 2736-2745.	3.3	9
77	Scleroglucan-Borax Hydrogel: A Flexible Tool for Redox Protein Immobilization. Langmuir, 2009, 25, 11097-11104.	3.5	7
78	Electrochemical and surface plasmon resonance characterization of Î ² -cyclodextrin-based self-assembled monolayers and evaluation of their inclusion complexes with glucocorticoids. Nanotechnology, 2009, 20, 285502.	2.6	7
79	Supramolecular modulation of the mechanical properties of amino acid-functionalized cellulose nanocrystal films. Materials Today Chemistry, 2022, 24, 100886 Diffusion-driven formation of Commismath xmins:mmi="http://www.w3.org/1998/Math/MathML"	3.5	7
80	display="inline" id="d1e256" altimg="si64.svg"> <mml:msub><mml:mrow /><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:mrow </mml:msub> O <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e264" altimg="si65.svg"><mml:msub><mml:mrow< td=""><td>6.1</td><td>6</td></mml:mrow<></mml:msub></mml:math 	6.1	6
81	/> <mml:mrow><mml:mn>4</mml:mn></mml:mrow> Ânanopetals layers for ho Bioelectrochemical Characterization of Horseradish and Soybean Peroxidases. Electroanalysis, 2009, 21, 2378-2386.	2.9	5
82	Determination of Se(IV) and Se(VI) in Italian Mineral Waters. Annali Di Chimica, 2006, 96, 647-656.	0.6	4
83	Surface plasmon resonance biosensors for environmental analysis: general aspects and applications. International Journal of Environment and Health, 2010, 4, 305.	0.3	2
84	Aptamer-based and DNAzyme-based biosensors for environmental monitoring. International Journal of Environment and Health, 2011, 5, 186.	0.3	2
85	lon Pair Formation between Tertiary Aliphatic Amines and Perchlorate in the Biphasic Water/Dichloromethane System. Journal of Physical Chemistry B, 2017, 121, 9403-9410.	2.6	1

86 Rücktitelbild: Electron Sharing and Anion-ï€ Recognition in Molecular Triangular Prisms (Angew.) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50