
Mohammad Obaidul Hoque

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/814326/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Therapeutic Targeting of Cancer Stem Cells in Lung, Head and Neck, and Bladder Cancers. Cancers, 2021, 13, 5098.	3.7	9
2	Urothelial Carcinoma In Situ of the Bladder: Correlation of CK20 Expression With Adaptive Immune Resistance, Response to BCG Therapy, and Clinical Outcome. Applied Immunohistochemistry and Molecular Morphology, 2021, 29, 127-135.	1.2	5
3	Somatic mitochondrial mutation discovery using ultra-deep sequencing of the mitochondrial genome reveals spatial tumor heterogeneity in head and neck squamous cell carcinoma. Cancer Letters, 2020, 471, 49-60.	7.2	12
4	Concurrent Targeting of Potential Cancer Stem Cells Regulating Pathways Sensitizes Lung Adenocarcinoma to Standard Chemotherapy. Molecular Cancer Therapeutics, 2020, 19, 2175-2185.	4.1	8
5	GULP1 regulates the NRF2-KEAP1 signaling axis in urothelial carcinoma. Science Signaling, 2020, 13, .	3.6	19
6	Effect of COVID-19 on Lungs: Focusing on Prospective Malignant Phenotypes. Cancers, 2020, 12, 3822.	3.7	36
7	Immune profiles in primary squamous cell carcinoma of the head and neck. Oral Oncology, 2019, 96, 77-88.	1.5	57
8	Targeting Cancer Stem Cells: A Strategy for Effective Eradication of Cancer. Cancers, 2019, 11, 732.	3.7	134
9	GSTP1 as a Potential Marker of Early Chemotherapy Response for Noninvasive Detection. European Urology, 2019, 76, 313-314.	1.9	Ο
10	Expression of programmed cell death ligand 1 in non–small cell lung cancer: Comparison between cytologic smears, core biopsies, and whole sections using the SP263 assay. Cancer Cytopathology, 2019, 127, 52-61.	2.4	49
11	Arsenic promotes the <scp>COX2/PGE2–SOX2</scp> axis to increase the malignant stemness properties of urothelial cells. International Journal of Cancer, 2018, 143, 113-126.	5.1	21
12	A time for YAP1: Tumorigenesis, immunosuppression and targeted therapy. International Journal of Cancer, 2018, 143, 2133-2144.	5.1	119
13	Differences in the Molecular Characteristics of Bladder Cancer between Smokers and Nonsmokers. European Urology Focus, 2018, 4, 98-99.	3.1	0
14	YAP1 and COX2 Coordinately Regulate Urothelial Cancer Stem-like Cells. Cancer Research, 2018, 78, 168-181.	0.9	77
15	Development of biomarkers for real precision medicine. Translational Lung Cancer Research, 2018, 7, S228-S231.	2.8	0
16	CD24 regulates cancer stem cell (CSC)-like traits and a panel of CSC-related molecules serves as a non-invasive urinary biomarker for the detection of bladder cancer. British Journal of Cancer, 2018, 119, 961-970.	6.4	27
17	PD-L1 Expression Heterogeneity in Non–Small Cell Lung Cancer: Defining Criteria for Harmonization between Biopsy Specimens and Whole Sections. Journal of Thoracic Oncology, 2018, 13, 1113-1120.	1.1	135
18	Integrated transcriptomic and epigenomic analysis of ovarian cancer reveals epigenetically silenced GULP1. Cancer Letters, 2018, 433, 242-251.	7.2	16

#	Article	IF	CITATIONS
19	Epigenetically regulated PAX6 drives cancer cells toward a stem-like state via GLI-SOX2 signaling axis in lung adenocarcinoma. Oncogene, 2018, 37, 5967-5981.	5.9	42
20	PD-L1 Assays 22C3 and SP263 are Not Interchangeable in Non–Small Cell Lung Cancer When Considering Clinically Relevant Cutoffs. American Journal of Surgical Pathology, 2018, 42, 1384-1389.	3.7	77
21	PD-L1 expression comparison between primary and relapsed non-small cell lung carcinoma using whole sections and clone SP263. Oncotarget, 2018, 9, 30465-30471.	1.8	26
22	MicroRNA expression profiling of Xp11 renal cell carcinoma. Human Pathology, 2017, 67, 18-29.	2.0	25
23	Mitochondria in chronic obstructive pulmonary disease and lung cancer: where are we now?. Biomarkers in Medicine, 2017, 11, 475-489.	1.4	36
24	In silico analysis of pathways activation landscape in oral squamous cell carcinoma and oral leukoplakia. Cell Death Discovery, 2017, 3, 17022.	4.7	27
25	Intravesical BCG Induces CD4+ T-Cell Expansion in an Immune Competent Model of Bladder Cancer. Cancer Immunology Research, 2017, 5, 594-603.	3.4	54
26	Expression of GULP1 in bronchial epithelium is associated with the progression of emphysema in chronic obstructive pulmonary disease. Respiratory Medicine, 2017, 124, 72-78.	2.9	4
27	MicroRNAs, promising biomarkers in the diagnosis of Xp11 translocation RCC—reply. Human Pathology, 2017, 68, 206-207.	2.0	Ο
28	Patient-derived xenografts effectively capture responses to oncology therapy in a heterogeneous cohort of patients with solid tumors. Annals of Oncology, 2017, 28, 2595-2605.	1.2	229
29	A Panel of Novel Detection and Prognostic Methylated DNA Markers in Primary Non–Small Cell Lung Cancer and Serum DNA. Clinical Cancer Research, 2017, 23, 7141-7152.	7.0	116
30	Promoter methylation of MCAM, ERα and ERβ in serum of early stage prostate cancer patients. Oncotarget, 2017, 8, 15431-15440.	1.8	31
31	Patientâ€derived xenografts as tools in pharmaceutical development. Clinical Pharmacology and Therapeutics, 2016, 99, 612-621.	4.7	50
32	The ratio of CD8 to Treg tumor-infiltrating lymphocytes is associated with response to cisplatin-based neoadjuvant chemotherapy in patients with muscle invasive urothelial carcinoma of the bladder. Oncolmmunology, 2016, 5, e1134412.	4.6	135
33	High-performance detection of somatic D-loop mutation in urothelial cell carcinoma patients by polymorphism ratio sequencing. Journal of Molecular Medicine, 2016, 94, 1015-1024.	3.9	7
34	An integrated genome-wide approach to discover deregulated microRNAs in non-small cell lung cancer: Clinical significance of miR-23b-3p deregulation. Scientific Reports, 2015, 5, 13236.	3.3	32
35	Identification and Validation of Protein Biomarkers of Response to Neoadjuvant Platinum Chemotherapy in Muscle Invasive Urothelial Carcinoma. PLoS ONE, 2015, 10, e0131245.	2.5	42
36	Involvement of Epigenetics and EMT-Related miRNA in Arsenic-Induced Neoplastic Transformation and Their Potential Clinical Use. Cancer Prevention Research, 2015, 8, 208-221.	1.5	51

#	Article	IF	CITATIONS
37	Gemcitabine and cisplatin neoadjuvant chemotherapy for muscle-invasive urothelial carcinoma: Predicting response and assessing outcomes. Urologic Oncology: Seminars and Original Investigations, 2015, 33, 204.e1-204.e7.	1.6	34
38	Cyclin A1 expression predicts progression in pT1 urothelial carcinoma of bladder: a tissue microarray study of 149 patients treated by transurethral resection. Histopathology, 2015, 66, 262-269.	2.9	15
39	Targeted sequencing reveals clonal genetic changes in the progression of early lung neoplasms and paired circulating DNA. Nature Communications, 2015, 6, 8258.	12.8	129
40	Abstract 4943: Engulfment gene GULP1 is a functional tumor suppressor through influencing TGF-β pathway and is silenced by promoter methylation in urothelial carcinoma. , 2015, , .		2
41	Epigenetic silencing of S100A2 in bladder and head and neck cancers. Oncoscience, 2015, 2, 410-418.	2.2	8
42	Abstract 811: Induction of stem-like cells with malignant properties by chronic exposure of immortalized normal human urothelial cell line to arsenic. , 2015, , .		0
43	Involvement of miR-518c-5p to Growth and Metastasis in Oral Cancer. PLoS ONE, 2014, 9, e115936.	2.5	12
44	Correction: The TGFβ–miR200–Mig6 Pathway Orchestrates the EMT-Associated Kinase Switch That Induces Resistance to EGFR Inhibitors. Cancer Research, 2014, 74, 4950-4950.	0.9	1
45	Clear cell papillary renal cell carcinoma: micro-RNA expression profiling and comparison with clear cell carcinoma and papillary renal cell carcinoma. Human Pathology, 2014, 45, 1130-1138.	2.0	61
46	The TGFβ–miR200–MIG6 Pathway Orchestrates the EMT-Associated Kinase Switch That Induces Resistance to EGFR Inhibitors. Cancer Research, 2014, 74, 3995-4005.	0.9	123
47	GSTP1Promoter Methylation is Associated with Recurrence in Early Stage Prostate Cancer. Journal of Urology, 2014, 192, 1542-1548.	0.4	48
48	Epigenetic inactivation of <i>VGF</i> associated with Urothelial Cell Carcinoma and its potential as a non-invasive biomarker using urine. Oncotarget, 2014, 5, 3350-3361.	1.8	17
49	An epigenetic marker panel for recurrence risk prediction of low grade papillary urothelial cell carcinoma (LGPUCC) and its potential use for surveillance after transurethral resection using urine. Oncotarget, 2014, 5, 5218-5233.	1.8	19
50	SH3GL2 is frequently deleted in non-small cell lung cancer and downregulates tumor growth by modulating EGFR signaling. Journal of Molecular Medicine, 2013, 91, 381-393.	3.9	28
51	Hypermethylation of Genes Detected in Urine from Ghanaian Adults with Bladder Pathology Associated with Schistosoma haematobium Infection. PLoS ONE, 2013, 8, e59089.	2.5	33
52	Genome-wide methylation profiling and the PI3K-AKT pathway analysis associated with smoking in urothelial cell carcinoma. Cell Cycle, 2013, 12, 1058-1070.	2.6	36
53	Cigarette smoke induces methylation of the tumor suppressor gene <i><i>NISCH</i></i> . Epigenetics, 2013, 8, 383-388.	2.7	28
54	Association of Promoter Methylation of VGF and PGP9.5 with Ovarian Cancer Progression. PLoS ONE, 2013, 8, e70878.	2.5	34

#	Article	IF	CITATIONS
55	Correlation between BRAF mutation and promoter methylation of TIMP3, RARβ2 and RASSF1A in thyroid cancer. Epigenetics, 2012, 7, 710-719.	2.7	51
56	A single nucleotide polymorphism in the human PIGK gene associates with low PIGK expression in colorectal cancer patients. International Journal of Oncology, 2012, 41, 1405-1410.	3.3	6
57	A <i>IM1</i> promoter hypermethylation as a predictor of decreased risk of recurrence following radical prostatectomy. Prostate, 2012, 72, 1133-1139.	2.3	18
58	AKT signaling pathway activated by HIN-1 methylation in non-small cell lung cancer. Tumor Biology, 2012, 33, 307-314.	1.8	19
59	OGDHL Is a Modifier of AKT-Dependent Signaling and NF-κB Function. PLoS ONE, 2012, 7, e48770.	2.5	56
60	Detection of Promoter Hypermethylation in Salivary Rinses as a Biomarker for Head and Neck Squamous Cell Carcinoma Surveillance. Clinical Cancer Research, 2011, 17, 4782-4789.	7.0	84
61	An Epigenetic Marker Panel for Detection of Lung Cancer Using Cell-Free Serum DNA. Clinical Cancer Research, 2011, 17, 4494-4503.	7.0	126
62	Genome-wide analysis of genetic alterations in testicular primary seminoma using high resolution single nucleotide polymorphism arrays. Genomics, 2011, 97, 341-349.	2.9	24
63	Genetic and Epigenetic Analysis of erbB Signaling Pathway Genes in Lung Cancer: Erratum. Journal of Thoracic Oncology, 2011, 6, 409.	1.1	1
64	A survey of methylated candidate tumor suppressor genes in nasopharyngeal carcinoma. International Journal of Cancer, 2011, 128, 1393-1403.	5.1	59
65	ΔNp63α Confers Tumor Cell Resistance to Cisplatin through the AKT1 Transcriptional Regulation. Cancer Research, 2011, 71, 1167-1176.	0.9	51
66	Integrated, Genome-Wide Screening for Hypomethylated Oncogenes in Salivary Gland Adenoid Cystic Carcinoma. Clinical Cancer Research, 2011, 17, 4320-4330.	7.0	68
67	Genetic and Epigenetic Analysis of erbB Signaling Pathway Genes in Lung Cancer. Journal of Thoracic Oncology, 2010, 5, 1887-1893.	1.1	31
68	Quantitative detection of Merkel cell virus in human tissues and possible mode of transmission. International Journal of Cancer, 2010, 126, 2991-2996.	5.1	146
69	KIF1A and EDNRB are differentially methylated in primary HNSCC and salivary rinses. International Journal of Cancer, 2010, 127, 2351-2359.	5.1	75
70	Quantitative Methylation Profiles for Multiple Tumor Suppressor Gene Promoters in Salivary Gland Tumors. PLoS ONE, 2010, 5, e10828.	2.5	27
71	Epigenomics and ovarian carcinoma. Biomarkers in Medicine, 2010, 4, 543-570.	1.4	38
72	Molecular Analysis of Plasma DNA for the Early Detection of Lung Cancer by Quantitative Methylation-Specific PCR. Clinical Cancer Research, 2010, 16, 3463-3472.	7.0	105

#	Article	IF	CITATIONS
73	Presence of 5-methylcytosine in CpNpG trinucleotides in the human genome. Genomics, 2010, 96, 67-72.	2.9	17
74	Abstract 4891: GULP1, a potential tumor suppressor gene in ovarian tumors and its utility as a biomarker. , 2010, , .		3
75	Changes in CpG Islands Promoter Methylation Patterns during Ductal Breast Carcinoma Progression. Cancer Epidemiology Biomarkers and Prevention, 2009, 18, 2694-2700.	2.5	73
76	Association between Lifestyle Factors and CpG Island Methylation in a Cancer-Free Population. Cancer Epidemiology Biomarkers and Prevention, 2009, 18, 2984-2991.	2.5	68
77	Pharmacologic Unmasking of Epigenetically Silenced Genes in Breast Cancer. Clinical Cancer Research, 2009, 15, 1184-1191.	7.0	64
78	Forced cytochrome B gene mutation expression induces mitochondrial proliferation and prevents apoptosis in human uroepithelial SVâ€HUCâ€1 cells. International Journal of Cancer, 2009, 125, 2829-2835.	5.1	35
79	DNA methylation changes in prostate cancer: current developments and future clinical implementation. Expert Review of Molecular Diagnostics, 2009, 9, 243-257.	3.1	61
80	Quantitative hypermethylation of a small panel of genes augments the diagnostic accuracy in fine-needle aspirate washings of breast lesions. Breast Cancer Research and Treatment, 2008, 109, 27-34.	2.5	47
81	Performance of mitochondrial DNA mutations detecting early stage cancer. BMC Cancer, 2008, 8, 285.	2.6	57
82	Evaluation of Promoter Hypermethylation Detection in Body Fluids as a Screening/Diagnosis Tool for Head and Neck Squamous Cell Carcinoma. Clinical Cancer Research, 2008, 14, 97-107.	7.0	163
83	Epigenetic silencing of human T (brachyury homologue) gene in non-small-cell lung cancer. Biochemical and Biophysical Research Communications, 2008, 365, 221-226.	2.1	31
84	Tissue Inhibitor of Metalloproteinases-3 Promoter Methylation is an Independent Prognostic Factor for Bladder Cancer. Journal of Urology, 2008, 179, 743-747.	0.4	48
85	Midkine induces epithelial-mesenchymal transition through Notch2/Jak2-Stat3 signaling in human keratinocytes. Cell Cycle, 2008, 7, 1613-1622.	2.6	65
86	Mitochondrial Cytochrome B Gene Mutation Promotes Tumor Growth in Bladder Cancer. Cancer Research, 2008, 68, 700-706.	0.9	117
87	Aberrant Promoter Methylation of Multiple Genes during Pathogenesis of Bladder Cancer. Cancer Epidemiology Biomarkers and Prevention, 2008, 17, 2786-2794.	2.5	72
88	Genome-Wide Promoter Analysis Uncovers Portions of the Cancer Methylome. Cancer Research, 2008, 68, 2661-2670.	0.9	131
89	High Promoter Methylation Levels of <i>APC</i> Predict Poor Prognosis in Sextant Biopsies from Prostate Cancer Patients. Clinical Cancer Research, 2007, 13, 6122-6129.	7.0	122
90	Positive Correlation of Tissue Inhibitor of Metalloproteinase-3 and Death-Associated Protein Kinase Hypermethylation in Head and Neck Squamous Cell Carcinoma. Laryngoscope, 2007, 117, 1376-1380.	2.0	18

#	Article	IF	CITATIONS
91	Aquaporin 1 Is Overexpressed in Lung Cancer and Stimulates NIH-3T3 Cell Proliferation and Anchorage-Independent Growth. American Journal of Pathology, 2006, 168, 1345-1353.	3.8	150
92	Detection of Aberrant Methylation of Four Genes in Plasma DNA for the Detection of Breast Cancer. Journal of Clinical Oncology, 2006, 24, 4262-4269.	1.6	219
93	Hypermethylation of Cyclin D2 is associated with loss of mRNA expression and tumor development in prostate cancer. Journal of Molecular Medicine, 2006, 84, 911-918.	3.9	54
94	Assessment of gene promoter hypermethylation for detection of cervical neoplasia. International Journal of Cancer, 2006, 119, 1908-1914.	5.1	97
95	Epigenetic Heterogeneity of High-Grade Prostatic Intraepithelial Neoplasia: Clues for Clonal Progression in Prostate Carcinogenesis. Molecular Cancer Research, 2006, 4, 1-8.	3.4	85
96	Dysfunctional KEAP1–NRF2 Interaction in Non-Small-Cell Lung Cancer. PLoS Medicine, 2006, 3, e420.	8.4	894
97	LKB1/STK11 Suppresses Cyclooxygenase-2 Induction and Cellular Invasion through PEA3 in Lung Cancer. Cancer Research, 2006, 66, 7870-7879.	0.9	43
98	N-Methyl-d-Aspartate Receptor Type 2B Is Epigenetically Inactivated and Exhibits Tumor-Suppressive Activity in Human Esophageal Cancer. Cancer Research, 2006, 66, 3409-3418.	0.9	97
99	Quantitation of Promoter Methylation of Multiple Genes in Urine DNA and Bladder Cancer Detection. Journal of the National Cancer Institute, 2006, 98, 996-1004.	6.3	237
100	Oxidized guanine lesions and hOgg1 activity in lung cancer. Oncogene, 2005, 24, 4496-4508.	5.9	76
101	Absence of V599E <i>BRAF</i> mutations in desmoplastic melanomas. Cancer, 2005, 103, 788-792.	4.1	60
102	Quantitative Methylation-Specific Polymerase Chain Reaction Gene Patterns in Urine Sediment Distinguish Prostate Cancer Patients From Control Subjects. Journal of Clinical Oncology, 2005, 23, 6569-6575.	1.6	227
103	Promoter Hypermethylation as an Independent Prognostic Factor for Relapse in Patients with Prostate Cancer Following Radical Prostatectomy. Clinical Cancer Research, 2005, 11, 8321-8325.	7.0	129
104	Frequent 14-3-3 Ïf Promoter Methylation in Benign and Malignant Prostate Lesions. DNA and Cell Biology, 2005, 24, 264-269.	1.9	60
105	MT1G Hypermethylation Is Associated with Higher Tumor Stage in Prostate Cancer. Cancer Epidemiology Biomarkers and Prevention, 2005, 14, 1274-1278.	2.5	65
106	Quantitative Assessment of Promoter Methylation Profiles in Thyroid Neoplasms. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 4011-4018.	3.6	122
107	Inverse Correlation between Cyclin A1 Hypermethylation and p53 Mutation in Head and Neck Cancer Identified by Reversal of Epigenetic Silencing. Cancer Research, 2004, 64, 5982-5987.	0.9	127
108	The Human MitoChip: A High-Throughput Sequencing Microarray for Mitochondrial Mutation Detection. Genome Research, 2004, 14, 812-819.	5.5	218

#	Article	IF	CITATIONS
109	Quantitative <i>RARβ2</i> Hypermethylation. Clinical Cancer Research, 2004, 10, 4010-4014.	7.0	117
110	A Quantitative Promoter Methylation Profile of Prostate Cancer. Clinical Cancer Research, 2004, 10, 8472-8478.	7.0	234
111	Detection of Promoter Hypermethylation of Multiple Genes in the Tumor and Bronchoalveolar Lavage of Patients with Lung Cancer. Clinical Cancer Research, 2004, 10, 2284-2288.	7.0	163
112	Quantitative Detection of Promoter Hypermethylation of Multiple Genes in the Tumor, Urine, and Serum DNA of Patients with Renal Cancer. Cancer Research, 2004, 64, 5511-5517.	0.9	218
113	CDC91L1 (PIG-U) is a newly discovered oncogene in human bladder cancer. Nature Medicine, 2004, 10, 374-381.	30.7	79
114	Aquaporin expression in human lymphocytes and dendritic cells. American Journal of Hematology, 2004, 75, 128-133.	4.1	76
115	Involvement of aquaporins in colorectal carcinogenesis. Oncogene, 2003, 22, 6699-6703.	5.9	175
116	PUMA in head and neck cancer. Cancer Letters, 2003, 199, 75-81.	7.2	33
117	Genome-wide genetic characterization of bladder cancer: a comparison of high-density single-nucleotide polymorphism arrays and PCR-based microsatellite analysis. Cancer Research, 2003, 63, 2216-22.	0.9	122
118	High-throughput molecular analysis of urine sediment for the detection of bladder cancer by high-density single-nucleotide polymorphism array. Cancer Research, 2003, 63, 5723-6.	0.9	44
119	Immunohistochemical p53 Expression Patterns in Sarcomatoid Carcinomas of the Upper Respiratory Tract. American Journal of Surgical Pathology, 2002, 26, 1024-1031.	3.7	63
120	Pharmacologic unmasking of epigenetically silenced tumor suppressor genes in esophageal squamous cell carcinoma. Cancer Cell, 2002, 2, 485-495.	16.8	315
121	Overexpression of p27Kip1 induces growth arrest and apoptosis in an oral cancer cell line. Oral Oncology, 2002, 38, 730-736.	1.5	28
122	Role of HGF/c-met system in invasion and metastasis of oral squamous cell carcinoma cellsin vitro and its clinical significance. International Journal of Cancer, 2001, 93, 489-496.	5.1	84
123	Diabetes and Tumor Formation in Transgenic Mice Expressing Reg I. Biochemical and Biophysical Research Communications, 2000, 278, 368-376.	2.1	30
124	Significant correlation between matrix metalloproteinase activity and tumor necrosis factorâ€oc in salivary extravasation mucoceles . Journal of Oral Pathology and Medicine, 1998, 27, 30-33.	2.7	13
125	Expression of integrin subunits in normal and malignant human salivary gland cell clones and its regulation by transforming growth factor-121. Cancer Letters, 1996, 109, 91-99.	7.2	4
126	Increased matrix metalloproteinase-2 activity induced byTGF-beta1 in duct cells of human salivary gland is associated with the development of cyst formation in vivo. Journal of Oral Pathology and Medicine, 1996, 25, 467-473.	2.7	10

#	Article	IF	CITATIONS
127	Proteolytic enzymes in salivary extravasation mucoceles. Journal of Oral Pathology and Medicine, 1995, 24, 299-302.	2.7	15
128	Identification of EGF as an angiogenic factor present in conditioned medium from human salivary gland adenocarcinoma cell clones with varying degrees of metastatic potential. Cancer Letters, 1994, 84, 189-198.	7.2	15