
Joost H A Martens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8142740/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dynamics of broad H3K4me3 domains uncover an epigenetic switch between cell identity and cancer-related genes. Genome Research, 2022, 32, 1328-1342.	5.5	14
2	Presence of mutant p53 increases stem cell frequency and is associated with reduced binding to classic TP53 binding sites in cell lines and primary AMLs. Experimental Hematology, 2022, 110, 39-46.	0.4	1
3	CBX2 shapes chromatin accessibility promoting AML via p38 MAPK signaling pathway. Molecular Cancer, 2022, 21, .	19.2	18
4	Recent insights into <i>Histone Acetyltransferase-1</i> : biological function and involvement in pathogenesis. Epigenetics, 2021, 16, 838-850.	2.7	21
5	Cell type-specific novel long non-coding RNA and circular RNA in the BLUEPRINT hematopoietic transcriptomes atlas. Haematologica, 2021, 106, 2613-2623.	3.5	12
6	The Role of Necroptosis: Biological Relevance and Its Involvement in Cancer. Cancers, 2021, 13, 684.	3.7	27
7	Potential impact of celiac disease genetic risk factors on T cell receptor signaling in gluten-specific CD4+ T cells. Scientific Reports, 2021, 11, 9252.	3.3	6
8	Mutational mechanisms shaping the coding and noncoding genome of germinal center derived B-cell lymphomas. Leukemia, 2021, 35, 2002-2016.	7.2	34
9	The USP7-TRIM27 axis mediates non-canonical PRC1.1 function and is a druggable target in leukemia. IScience, 2021, 24, 102435.	4.1	19
10	Characterization of a genomic region 8Âkb downstream of GFI1B associated with myeloproliferative neoplasms. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166259.	3.8	0
11	Stronger induction of trained immunity by mucosal BCG or MTBVAC vaccination compared to standard intradermal vaccination. Cell Reports Medicine, 2021, 2, 100185.	6.5	41
12	The EHA Research Roadmap: Normal Hematopoiesis. HemaSphere, 2021, 5, e669.	2.7	1
13	Blueprint of human thymopoiesis reveals molecular mechanisms of stage-specific TCR enhancer activation. Journal of Experimental Medicine, 2020, 217, .	8.5	15
14	Chromatin activation as a unifying principle underlying pathogenic mechanisms in multiple myeloma. Genome Research, 2020, 30, 1217-1227.	5.5	35
15	CBFβ-SMMHC Affects Genome-wide Polycomb Repressive Complex 1 Activity in Acute Myeloid Leukemia. Cell Reports, 2020, 30, 299-307.e3.	6.4	6
16	CD34 ⁺ acute myeloid leukemia cells with low levels of reactive oxygen species show increased expression of stemness genes and can be targeted by the BCL2 inhibitor venetoclax. Haematologica, 2020, 105, e399-e403.	3.5	7
17	Chromatin-Based Classification of Genetically Heterogeneous AMLs into Two Distinct Subtypes with Diverse Stemness Phenotypes. Cell Reports, 2019, 26, 1059-1069.e6.	6.4	33
18	The alarmin S100A9 hampers osteoclast differentiation from human circulating precursors by reducing the expression of RANK. FASEB Journal, 2019, 33, 10104-10115.	0.5	9

#	Article	IF	CITATIONS
19	The AAA+ATPase RUVBL2 is essential for the oncogenic function of c-MYB in acute myeloid leukemia. Leukemia, 2019, 33, 2817-2829.	7.2	18
20	BRD9 binds cell type-specific chromatin regions regulating leukemic cell survival via STAT5 inhibition. Cell Death and Disease, 2019, 10, 338.	6.3	31
21	CBFβ-MYH11 interferes with megakaryocyte differentiation via modulating a gene program that includes GATA2 and KLF1. Blood Cancer Journal, 2019, 9, 33.	6.2	7
22	P074â€The alarmin S100A9 hampers osteoclast differentiation from circulating precursors by reducing the expression of rank. , 2019, , .		0
23	RUNX1 mutations enhance self-renewal and block granulocytic differentiation in human in vitro models and primary AMLs. Blood Advances, 2019, 3, 320-332.	5.2	27
24	Large-scale in vitro production of red blood cells from human peripheral blood mononuclear cells. Blood Advances, 2019, 3, 3337-3350.	5.2	70
25	Ring sideroblasts in AML are associated with adverse risk characteristics and have a distinct gene expression pattern. Blood Advances, 2019, 3, 3111-3122.	5.2	6
26	HIF1/2-exerted control over glycolytic gene expression is not functionally relevant for glycolysis in human leukemic stem/progenitor cells. Cancer & Metabolism, 2019, 7, 11.	5.0	46
27	The acute myeloid leukemia associated AML1-ETO fusion protein alters the transcriptome and cellular progression in a single-oncogene expressing in vitro induced pluripotent stem cell based granulocyte differentiation model. PLoS ONE, 2019, 14, e0226435.	2.5	15
28	Molecular mechanisms of bleeding disorderassociated GFI1B ^{Q287*} mutation and its affected pathways in megakaryocytes and platelets. Haematologica, 2019, 104, 1460-1472.	3.5	21
29	Title is missing!. , 2019, 14, e0226435.		Ο
30	Title is missing!. , 2019, 14, e0226435.		0
31	Title is missing!. , 2019, 14, e0226435.		Ο
32	Title is missing!. , 2019, 14, e0226435.		0
33	GFI1 is required for RUNX1/ETO positive acute myeloid leukemia. Haematologica, 2018, 103, e395-e399.	3.5	13
34	C-terminal BRE overexpression in 11q23-rearranged and t(8;16) acute myeloid leukemia is caused by intragenic transcription initiation. Leukemia, 2018, 32, 828-836.	7.2	6
35	Multi-omics profiling reveals a distinctive epigenome signature for high-risk acute promyelocytic leukemia. Oncotarget, 2018, 9, 25647-25660.	1.8	13
36	E-cadherin loss induces targetable autocrine activation of growth factor signalling in lobular breast cancer. Scientific Reports, 2018, 8, 15454.	3.3	55

#	Article	IF	CITATIONS
37	Dynamics of Transcription Regulation in Human Bone Marrow Myeloid Differentiation to Mature Blood Neutrophils. Cell Reports, 2018, 24, 2784-2794.	6.4	104
38	The reference epigenome and regulatory chromatin landscape of chronic lymphocytic leukemia. Nature Medicine, 2018, 24, 868-880.	30.7	157
39	Combined HAT/EZH2 modulation leads to cancer-selective cell death. Oncotarget, 2018, 9, 25630-25646.	1.8	5
40	c-Myc Modulation and Acetylation Is a Key HDAC Inhibitor Target in Cancer. Clinical Cancer Research, 2017, 23, 2542-2555.	7.0	105
41	MLL-AF9 and MLL-AF4 oncofusion proteins bind a distinct enhancer repertoire and target the RUNX1 program in 11q23 acute myeloid leukemia. Oncogene, 2017, 36, 3346-3356.	5.9	86
42	miR-194-5p/BCLAF1 deregulation in AML tumorigenesis. Leukemia, 2017, 31, 2315-2325.	7.2	66
43	CBFÎ ² -SMMHC regulates ribosomal gene transcription and alters ribosome biogenesis. Leukemia, 2017, 31, 1443-1446.	7.2	7
44	Time-resolved analysis of DNA-protein interactions in living cells by UV laser pulses. Scientific Reports, 2017, 7, 11725.	3.3	11
45	Platelet function is modified by common sequence variation in megakaryocyte super enhancers. Nature Communications, 2017, 8, 16058.	12.8	50
46	CITED2 affects leukemic cell survival by interfering with p53 activation. Cell Death and Disease, 2017, 8, e3132-e3132.	6.3	11
47	BRD3/4 inhibition and FLT3-ligand deprivation target pathways that are essential for the survival of human MLL-AF9+ leukemic cells. PLoS ONE, 2017, 12, e0189102.	2.5	10
48	AML associated oncofusion proteins PML-RARA, AML1-ETO and CBFB-MYH11 target RUNX/ETS-factor binding sites to modulate H3ac levels and drive leukemogenesis. Oncotarget, 2017, 8, 12855-12865.	1.8	22
49	MEIS2 Is an Oncogenic Partner in AML1-ETO-Positive AML. Cell Reports, 2016, 16, 498-507.	6.4	32
50	eFORGE: A Tool for Identifying Cell Type-Specific Signal in Epigenomic Data. Cell Reports, 2016, 17, 2137-2150.	6.4	102
51	Decoding the DNA Methylome of Mantle Cell Lymphoma in the Light of the Entire B Cell Lineage. Cancer Cell, 2016, 30, 806-821.	16.8	103
52	β-Glucan Reverses the Epigenetic State of LPS-Induced Immunological Tolerance. Cell, 2016, 167, 1354-1368.e14.	28.9	467
53	The Allelic Landscape of Human Blood Cell Trait Variation and Links to Common Complex Disease. Cell, 2016, 167, 1415-1429.e19.	28.9	1,052
54	The Hematopoietic Transcription Factors RUNX1 and ERG Prevent AML1-ETO Oncogene Overexpression and Onset of the Apoptosis Program in t(8;21) AMLs. Cell Reports, 2016, 17, 2087-2100.	6.4	60

#	Article	IF	CITATIONS
55	Distinct Trends of DNA Methylation Patterning in the Innate and Adaptive Immune Systems. Cell Reports, 2016, 17, 2101-2111.	6.4	54
56	Genetic Drivers of Epigenetic and Transcriptional Variation in Human Immune Cells. Cell, 2016, 167, 1398-1414.e24.	28.9	573
57	The European Hematology Association Roadmap for European Hematology Research: a consensus document. Haematologica, 2016, 101, 115-208.	3.5	67
58	Non-canonical PRC1.1 Targets Active Genes Independent of H3K27me3 and Is Essential for Leukemogenesis. Cell Reports, 2016, 14, 332-346.	6.4	126
59	The oncofusion protein FUS–ERG targets key hematopoietic regulators and modulates the all-trans retinoic acid signaling pathway in t(16;21) acute myeloid leukemia. Oncogene, 2016, 35, 1965-1976.	5.9	39
60	Aberrant Expression of the SOX11 Oncogene in Mantle Cell Lymphoma Is Associated with Activation and De Novo 3D Looping of a Distant Enhancer Element. Blood, 2016, 128, 459-459.	1.4	0
61	Whole-Genome Analysis of the Chromatin Structure in Multiple Myeloma. Blood, 2016, 128, 118-118.	1.4	0
62	Glucocorticoid receptor and nuclear factor kappa-b affect three-dimensional chromatin organization. Genome Biology, 2015, 16, 264.	8.8	48
63	Whole-epigenome analysis in multiple myeloma reveals DNA hypermethylation of B cell-specific enhancers. Genome Research, 2015, 25, 478-487.	5.5	118
64	DNA methylome analysis in Burkitt and follicular lymphomas identifies differentially methylated regions linked to somatic mutation and transcriptional control. Nature Genetics, 2015, 47, 1316-1325.	21.4	119
65	Context-Selective Death of Acute Myeloid Leukemia Cells Triggered by the Novel Hybrid Retinoid-HDAC Inhibitor MC2392. Cancer Research, 2014, 74, 2328-2339.	0.9	33
66	The genome-wide molecular signature of transcription factors in leukemia. Experimental Hematology, 2014, 42, 637-650.	0.4	13
67	Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science, 2014, 345, 1251086.	12.6	1,338
68	Genome-wide binding of transcription factors in inv(16) acute myeloid leukemia. Genomics Data, 2014, 2, 170-172.	1.3	6
69	Transcriptional diversity during lineage commitment of human blood progenitors. Science, 2014, 345, 1251033.	12.6	253
70	Dual Promoter Usage as Regulatory Mechanism of let-7c Expression in Leukemic and Solid Tumors. Molecular Cancer Research, 2014, 12, 878-889.	3.4	18
71	Suv39h-Dependent H3K9me3 Marks Intact Retrotransposons and Silences LINE Elements in Mouse Embryonic Stem Cells. Molecular Cell, 2014, 55, 277-290.	9.7	278
72	mTOR- and HIF-1α–mediated aerobic glycolysis as metabolic basis for trained immunity. Science, 2014, 345, 1250684.	12.6	1,517

#	Article	IF	CITATIONS
73	The Tetraspanin CD9 Affords High-Purity Capture of All Murine Hematopoietic Stem Cells. Cell Reports, 2013, 4, 642-648.	6.4	42
74	CBFB-MYH11/RUNX1 together with a compendium of hematopoietic regulators, chromatin modifiers and basal transcription factors occupies self-renewal genes in inv(16) acute myeloid leukemia. Experimental Hematology, 2013, 41, S50.	0.4	0
75	BLUEPRINT: mapping human blood cell epigenomes. Haematologica, 2013, 98, 1487-1489.	3.5	189
76	Chromatin accessibility, p300, and histone acetylation define PML-RARα and AML1-ETO binding sites in acute myeloid leukemia. Blood, 2012, 120, 3058-3068.	1.4	60
77	ERG and FLI1 binding sites demarcate targets for aberrant epigenetic regulation by AML1-ETO in acute myeloid leukemia. Blood, 2012, 120, 4038-4048.	1.4	98
78	Candida albicans Infection Affords Protection against Reinfection via Functional Reprogramming of Monocytes. Cell Host and Microbe, 2012, 12, 223-232.	11.0	926
79	BLUEPRINT to decode the epigenetic signature written in blood. Nature Biotechnology, 2012, 30, 224-226.	17.5	323
80	Acute myeloid leukemia: A central role for the ETS factor ERG. International Journal of Biochemistry and Cell Biology, 2011, 43, 1413-1416.	2.8	46
81	Genome-wide interplay of nuclear receptors with the epigenome. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 818-823.	3.8	23
82	Genome-wide functions of PML–RARα in acute promyelocytic leukaemia. British Journal of Cancer, 2011, 104, 554-558.	6.4	54
83	The Decade of the Epigenomes?. Genes and Cancer, 2011, 2, 680-687.	1.9	16
84	PML-RARα/RXR Alters the Epigenetic Landscape in Acute Promyelocytic Leukemia. Cancer Cell, 2010, 17, 173-185.	16.8	276
85	The molecular signature of oncofusion proteins in acute myeloid leukemia. FEBS Letters, 2010, 584, 2662-2669.	2.8	88
86	Active and Repressive Chromatin Are Interspersed without Spreading in an Imprinted Gene Cluster in the Mammalian Genome. Molecular Cell, 2007, 27, 353-366.	9.7	138
87	Silenced Tumor Suppressor Genes Reactivated by DNA Demethylation Do Not Return to a Fully Euchromatic Chromatin State. Cancer Research, 2006, 66, 3541-3549.	0.9	266
88	Histone modification patterns associated with the human X chromosome. EMBO Reports, 2006, 7, 628-634.	4.5	94
89	The Role of Histone Modifications in Epigenetic Transitions During Normal and Perturbed Development. , 2006, , 1-27.		34
90	The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO Journal, 2005, 24, 800-812.	7.8	594

#	Article	IF	CITATIONS
91	EZH2 and Histone 3 Trimethyl Lysine 27 Associated with II4 and II13 Gene Silencing in TH1 Cells. Journal of Biological Chemistry, 2005, 280, 31470-31477.	3.4	132
92	A Chromosomal Memory Triggered by Xist Regulates Histone Methylation in X Inactivation. PLoS Biology, 2004, 2, e171.	5.6	336
93	ENGINEERING FLOWS IN SMALL DEVICES. Annual Review of Fluid Mechanics, 2004, 36, 381-411.	25.0	3,041
94	Partitioning and Plasticity of Repressive Histone Methylation States in Mammalian Chromatin. Molecular Cell, 2003, 12, 1577-1589.	9.7	1,010
95	Cascade of Distinct Histone Modifications during Collagenase Gene Activation. Molecular and Cellular Biology, 2003, 23, 1808-1816.	2.3	84
96	Scaffold/Matrix Attachment Region Elements Interact with a p300 - Scaffold Attachment Factor A Complex and Are Bound by Acetylated Nucleosomes. Molecular and Cellular Biology, 2002, 22, 2598-2606.	2.3	87
97	Characterization of plant proteins that interact with cowpea mosaic virus â€~60K' protein in the yeast two-hybrid system. Journal of General Virology, 2002, 83, 885-893.	2.9	35