Dina Fattakhova-Rohlfing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8142421/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Iron-Doped Nickel Oxide Nanocrystals as Highly Efficient Electrocatalysts for Alkaline Water Splitting. ACS Nano, 2015, 9, 5180-5188.	14.6	446
2	Three-Dimensional Titanium Dioxide Nanomaterials. Chemical Reviews, 2014, 114, 9487-9558.	47.7	349
3	Oriented Films of Conjugated 2D Covalent Organic Frameworks as Photocathodes for Water Splitting. Journal of the American Chemical Society, 2018, 140, 2085-2092.	13.7	320
4	Ultrasmall Dispersible Crystalline Nickel Oxide Nanoparticles as Highâ€Performance Catalysts for Electrochemical Water Splitting. Advanced Functional Materials, 2014, 24, 3123-3129.	14.9	303
5	Highly Crystalline WO 3 Thin Films with Ordered 3D Mesoporosity and Improved Electrochromic Performance. Small, 2006, 2, 1203-1211.	10.0	180
6	Tin doping speeds up hole transfer during light-driven water oxidation at hematite photoanodes. Physical Chemistry Chemical Physics, 2014, 16, 24610-24620.	2.8	159
7	Highly Organized Mesoporous TiO2 Films with Controlled Crystallinity: A Li-Insertion Study. Advanced Functional Materials, 2007, 17, 123-132.	14.9	158
8	Nonaqueous Synthesis of Uniform Indium Tin Oxide Nanocrystals and Their Electrical Conductivity in Dependence of the Tin Oxide Concentration. Chemistry of Materials, 2006, 18, 2848-2854.	6.7	157
9	Nanoscale Porous Framework of Lithium Titanate for Ultrafast Lithium Insertion. Angewandte Chemie - International Edition, 2012, 51, 7459-7463.	13.8	155
10	Highly Conducting Nanosized Monodispersed Antimony-Doped Tin Oxide Particles Synthesized via Nonaqueous Solâ~'Gel Procedure. Chemistry of Materials, 2009, 21, 5229-5236.	6.7	143
11	Niobium-Doped Titania Nanoparticles: Synthesis and Assembly into Mesoporous Films and Electrical Conductivity. ACS Nano, 2010, 4, 5373-5381.	14.6	138
12	A garnet structure-based all-solid-state Li battery without interface modification: resolving incompatibility issues on positive electrodes. Sustainable Energy and Fuels, 2019, 3, 280-291.	4.9	133
13	Ultrasmall Titania Nanocrystals and Their Direct Assembly into Mesoporous Structures Showing Fast Lithium Insertion. Journal of the American Chemical Society, 2010, 132, 12605-12611.	13.7	119
14	Lithium Insertion into Mesoscopic and Singleâ€Crystal TiO2 (Rutile) Electrodes. Journal of the Electrochemical Society, 1999, 146, 1375-1379.	2.9	103
15	Functionalized Mesoporous Silica Films as a Matrix for Anchoring Electrochemically Active Guests. Langmuir, 2005, 21, 11320-11329.	3.5	102
16	Zinc Ferrite Photoanode Nanomorphologies with Favorable Kinetics for Water‧plitting. Advanced Functional Materials, 2016, 26, 4435-4443.	14.9	99
17	Tailoring the Morphology of Mesoporous Titania Thin Films through Biotemplating with Nanocrystalline Cellulose. Journal of the American Chemical Society, 2014, 136, 5930-5937.	13.7	97
18	Efficient OER Catalyst with Low Ir Volume Density Obtained by Homogeneous Deposition of Iridium Oxide Nanoparticles on Macroporous Antimonyâ€Doped Tin Oxide Support. Advanced Functional Materials, 2020, 30, 1906670.	14.9	95

#	Article	IF	CITATIONS
19	"Brick and Mortar―Strategy for the Formation of Highly Crystalline Mesoporous Titania Films from Nanocrystalline Building Blocks. Chemistry of Materials, 2009, 21, 1260-1265.	6.7	90
20	Formation of Interpenetrating Hierarchical Titania Structures by Confined Synthesis in Inverse Opal. Journal of the American Chemical Society, 2011, 133, 17274-17282.	13.7	90
21	Transparent Conducting Films of Indium Tin Oxide with 3D Mesopore Architecture. Advanced Materials, 2006, 18, 2980-2983.	21.0	84
22	Tin Oxide Based Nanomaterials and Their Application as Anodes in Lithiumâ€lon Batteries and Beyond. ChemSusChem, 2019, 12, 4140-4159.	6.8	82
23	Rock Salt Ni/Co Oxides with Unusual Nanoscaleâ€Stabilized Composition as Water Splitting Electrocatalysts. Advanced Functional Materials, 2017, 27, 1605121.	14.9	72
24	Lithium insertion into self-organized mesoscopic TiO2 (anatase) electrodes. Solid State Ionics, 2000, 135, 101-106.	2.7	62
25	Ion-Permselective pH-Switchable Mesoporous Silica Thin Layers. Chemistry of Materials, 2007, 19, 1640-1647.	6.7	62
26	Black Magic in Gray Titania: Nobleâ€Metalâ€Free Photocatalytic H ₂ Evolution from Hydrogenated Anatase. ChemSusChem, 2017, 10, 62-67.	6.8	61
27	Transparent Conducting Films of Antimonyâ€Doped Tin Oxide with Uniform Mesostructure Assembled from Preformed Nanocrystals. Small, 2010, 6, 633-637.	10.0	59
28	Water-Dispersible Small Monodisperse Electrically Conducting Antimony Doped Tin Oxide Nanoparticles. Chemistry of Materials, 2015, 27, 1090-1099.	6.7	59
29	Low temperature sintering of fully inorganic all-solid-state batteries – Impact of interfaces on full cell performance. Journal of Power Sources, 2021, 482, 228905.	7.8	58
30	Physical Vapor Deposition in Solidâ€State Battery Development: From Materials to Devices. Advanced Science, 2021, 8, e2002044.	11.2	55
31	Spray Deposition of Titania Films with Incorporated Crystalline Nanoparticles for Allâ€5olidâ€5tate Dyeâ€5ensitized Solar Cells Using P3HT. Advanced Functional Materials, 2016, 26, 1498-1506.	14.9	53
32	Why Tinâ€Doping Enhances the Efficiency of Hematite Photoanodes for Water Splitting—The Full Picture. Advanced Functional Materials, 2018, 28, 1804472.	14.9	53
33	Atomic‣ayerâ€Deposited Aluminum and Zirconium Oxides for Surface Passivation of TiO ₂ in Highâ€Efficiency Organic Photovoltaics. Advanced Energy Materials, 2014, 4, 1400214.	19.5	52
34	Li Insertion into Li-Ti-O Spinels: Voltammetric and Electrochemical Impedance Spectroscopy Study. Journal of the Electrochemical Society, 2001, 148, A1045.	2.9	50
35	Zintl Clusters as Wetâ€Chemical Precursors for Germanium Nanomorphologies with Tunable Composition. Angewandte Chemie - International Edition, 2016, 55, 2441-2445.	13.8	50
36	Low-Temperature Synthesis of Mesoporous Titaniaâ^'Silica Films with Pre-Formed Anatase Nanocrystals. Chemistry of Materials, 2009, 21, 2410-2417.	6.7	48

#	Article	IF	CITATIONS
37	Electrochemical charging and electrocatalysis at hybrid films of polymer-interconnected polyoxometallate-stabilized carbon submicroparticles. Journal of Solid State Electrochemistry, 2006, 10, 168-175.	2.5	47
38	Crystallization of Indium Tin Oxide Nanoparticles: From Cooperative Behavior to Individuality. Small, 2007, 3, 310-317.	10.0	45
39	Electron Collection in Host–Guest Nanostructured Hematite Photoanodes for Water Splitting: The Influence of Scaffold Doping Density. ACS Applied Materials & Interfaces, 2015, 7, 4623-4630.	8.0	42
40	Solvothermal synthesis and electrochemical behavior of nanocrystalline cubic Li–Ti–O oxides with cationic disorder. Solid State Ionics, 2005, 176, 1877-1885.	2.7	40
41	Preparation and characterization of polyoxometalate-modified carbon nanosheets. Carbon, 2006, 44, 1942-1948.	10.3	40
42	Lithium insertion into titanium dioxide (anatase) electrodes: microstructure and electrolyte effects. Journal of Solid State Electrochemistry, 2001, 5, 196-204.	2.5	37
43	Study of LiCoO ₂ /Li ₇ La ₃ Zr ₂ O ₁₂ :Ta Interface Degradation in All-Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2022, 14, 11288-11299.	8.0	36
44	Electrochemical Activity of Hydrothermally Synthesized Li-Ti-O Cubic Oxides toward Li Insertion. Journal of the Electrochemical Society, 2002, 149, A1224.	2.9	35
45	In situ study of spray deposited titania photoanodes for scalable fabrication of solid-state dye-sensitized solar cells. Nano Energy, 2017, 40, 317-326.	16.0	35
46	Charge Transport in \${hbox{TiO}}_{2}\$ Films With Complex Percolation Pathways Investigated by Time-Resolved Terahertz Spectroscopy. IEEE Transactions on Terahertz Science and Technology, 2013, 3, 302-313.	3.1	33
47	Macroporous indium tin oxide electrode layers as conducting substrates for immobilization of bulky electroactive guests. Electrochimica Acta, 2014, 140, 108-115.	5.2	32
48	Electric-field-tunable defect mode in one-dimensional photonic crystal operating in the terahertz range. Applied Physics Letters, 2013, 102, .	3.3	31
49	Making Ultrafast Highâ€Capacity Anodes for Lithiumâ€lon Batteries via Antimony Doping of Nanosized Tin Oxide/Graphene Composites. Advanced Functional Materials, 2018, 28, 1706529.	14.9	31
50	Controlling the lithium proton exchange of LLZO to enable reproducible processing and performance optimization. Journal of Materials Chemistry A, 2021, 9, 4831-4840.	10.3	31
51	Ultrasmall Co ₃ O ₄ Nanocrystals Strongly Enhance Solar Water Splitting on Mesoporous Hematite. Advanced Materials Interfaces, 2015, 2, 1500358.	3.7	30
52	Assembly of mesoporous indium tin oxide electrodes from nano-hydroxide building blocks. Chemical Science, 2012, 3, 2367.	7.4	29
53	Nanostructured Antimonyâ€Doped Tin Oxide Layers with Tunable Pore Architectures as Versatile Transparent Current Collectors for Biophotovoltaics. Advanced Functional Materials, 2016, 26, 6682-6692.	14.9	28
54	Highly conductive titania supported iridium oxide nanoparticles with low overall iridium density as OER catalyst for large-scale PEM electrolysis. Applied Materials Today, 2021, 24, 101134.	4.3	28

#	Article	IF	CITATIONS
55	Dendrite-tolerant all-solid-state sodium batteries and an important mechanism of metal self-diffusion. Journal of Power Sources, 2020, 476, 228666.	7.8	26
56	Multilayered High Surface Area "Brick and Mortar―Mesoporous Titania Films as Efficient Anodes in Dye-Sensitized Solar Cells. Chemistry of Materials, 2012, 24, 659-663.	6.7	25
57	Highly soluble energy relay dyes for dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2013, 15, 11306.	2.8	25
58	Carbonaceous Oxygen Evolution Reaction Catalysts: From Defect and Dopingâ€Induced Activity over Hybrid Compounds to Ordered Framework Structures. Small, 2021, 17, e2007484.	10.0	25
59	All-Solid-State Li Batteries with NCM–Garnet-Based Composite Cathodes: The Impact of NCM Composition on Material Compatibility. ACS Applied Energy Materials, 2022, 5, 6913-6926.	5.1	25
60	Tuning of dielectric properties of SrTiO <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>3</mml:mn></mml:mrow </mml:msub>in the terahertz range. Physical Review B, 2011, 84, .</mml:math 	3.2	24
61	Recycling Strategies for Ceramic All-Solid-State Batteries—Part I: Study on Possible Treatments in Contrast to Li-Ion Battery Recycling. Metals, 2020, 10, 1523.	2.3	24
62	Interaction of Fructose Dehydrogenase with a Sulfonated Polyaniline: Application for Enhanced Bioelectrocatalysis. ACS Catalysis, 2015, 5, 2081-2087.	11.2	23
63	Nanocellulose-Templated Porous Titania Scaffolds Incorporating Presynthesized Titania Nanocrystals. Chemistry of Materials, 2015, 27, 6205-6212.	6.7	23
64	Dual absorber Fe ₂ O ₃ /WO ₃ host-guest architectures for improved charge generation and transfer in photoelectrochemical applications. Materials Research Express, 2017, 4, 016409.	1.6	23
65	In Situ Study of Degradation in P3HT–Titania-Based Solid-State Dye-Sensitized Solar Cells. ACS Energy Letters, 2017, 2, 991-997.	17.4	23
66	Zintl Clusters as Wetâ€Chemical Precursors for Germanium Nanomorphologies with Tunable Composition. Angewandte Chemie, 2016, 128, 2487-2491.	2.0	22
67	Black phosphorus–arsenic alloys for lithium ion batteries. FlatChem, 2020, 19, 100143.	5.6	22
68	Boron in Ni-Rich NCM811 Cathode Material: Impact on Atomic and Microscale Properties. ACS Applied Energy Materials, 2022, 5, 524-538.	5.1	22
69	Ceramics for electrochemical storage. , 2020, , 549-709.		21
70	Insertion of lithium into mesoscopic anatase electrodes - an electrochemical and in-situ EQCM study. Journal of Solid State Electrochemistry, 1997, 1, 83-87.	2.5	20
71	Ultrafast terahertz photoconductivity in nanocrystalline mesoporous TiO2 films. Applied Physics Letters, 2010, 96, 062103.	3.3	20
72	A wet-chemical route for macroporous inverse opal Ge anodes for lithium ion batteries with high capacity retention. Sustainable Energy and Fuels, 2018, 2, 85-90.	4.9	20

#	Article	IF	CITATIONS
73	Tuning the crystallinity parameters in macroporous titania films. Journal of Materials Chemistry A, 2014, 2, 6504.	10.3	19
74	Covalent immobilization of redox protein within the mesopores of transparent conducting electrodes. Electrochimica Acta, 2014, 116, 1-8.	5.2	19
75	Conductivity Mechanisms in Sb-Doped SnO ₂ Nanoparticle Assemblies: DC and Terahertz Regime. Journal of Physical Chemistry C, 2015, 119, 19485-19495.	3.1	19
76	Cellulose Nanocrystal-Templated Tin Dioxide Thin Films for Gas Sensing. ACS Applied Materials & Interfaces, 2020, 12, 12639-12647.	8.0	19
77	Modelling electro-chemical induced stresses in all-solid-state batteries: Anisotropy effects in cathodes and cell design optimisation. Journal of Power Sources, 2021, 489, 229430.	7.8	19
78	Electrochemical oxygenation of diorganyldichlorosilanes: a novel route to generation of diorganylsilanones. Journal of Organometallic Chemistry, 2000, 613, 170-176.	1.8	18
79	Electronâ€Blocking and Oxygen Evolution Catalyst Layers by Plasmaâ€Enhanced Atomic Layer Deposition of Nickel Oxide. Advanced Materials Interfaces, 2018, 5, 1701531.	3.7	18
80	How photocorrosion can trick you: a detailed study on low-bandgap Li doped CuO photocathodes for solar hydrogen production. Nanoscale, 2020, 12, 7766-7775.	5.6	18
81	Nanocellulose-Assisted Formation of Porous Hematite Nanostructures. Inorganic Chemistry, 2015, 54, 1129-1135.	4.0	17
82	Free standing dual phase cathode tapes – scalable fabrication and microstructure optimization of garnet-based ceramic cathodes. Journal of Materials Chemistry A, 2022, 10, 2320-2326.	10.3	17
83	Tunable dielectric properties of KTaO ₃ single crystals in the terahertz range. Journal Physics D: Applied Physics, 2016, 49, 065306.	2.8	16
84	Polymer–Ceramic Composite Cathode with Enhanced Storage Capacity Manufactured by Field-Assisted Sintering and Infiltration. ACS Applied Energy Materials, 2021, 4, 10428-10432.	5.1	16
85	Illumination-induced properties of highly ordered mesoporous TiO2 layers with controlled crystallinity. Thin Solid Films, 2007, 515, 6541-6543.	1.8	15
86	Electrode layers for electrochemical applications based on functionalized mesoporous silica films. Sensors and Actuators B: Chemical, 2007, 126, 78-81.	7.8	15
87	Stereoelectronic effects in the reactivity of electrogenerated cation radicals of arylselenides. Journal of Organometallic Chemistry, 2000, 613, 220-230.	1.8	14
88	V(III)-Doped Nickel Oxide-Based Nanocatalysts for Electrochemical Water Splitting: Influence of Phase, Composition, and Doping on the Electrocatalytic Activity. Chemistry of Materials, 2020, 32, 10394-10406.	6.7	14
89	The anodic acetoxylation of alkylarylselenides. Tetrahedron Letters, 1993, 34, 6045-6048.	1.4	13
90	Tuning the Conduction Mechanism in Niobium-Doped Titania Nanoparticle Networks. Journal of Physical Chemistry C, 2011, 115, 6968-6974.	3.1	13

#	Article	IF	CITATIONS
91	Evaluation of Scalable Synthesis Methods for Aluminum-Substituted Li7La3Zr2O12 Solid Electrolytes. Materials, 2021, 14, 6809.	2.9	13
92	Fabrication of thin sheets of the sodium superionic conductor Na5YSi4O12 with tape casting. Chemical Engineering Journal, 2022, 435, 134774.	12.7	13
93	The electrochemical oxidation of β-silyl-substituted arylsulfides and arylselenides. Electrochimica Acta, 1998, 43, 1811-1819.	5.2	12
94	3D-Electrode Architectures for Enhanced Direct Bioelectrocatalysis of Pyrroloquinoline Quinone-Dependent Glucose Dehydrogenase. ACS Applied Materials & Interfaces, 2014, 6, 17887-17893.	8.0	12
95	Carbon-templated conductive oxide supports for oxygen evolution catalysis. Nanoscale, 2019, 11, 14285-14293.	5.6	12
96	Investigation of Structural Changes of Cu(I) and Ag(I) Complexes Utilizing a Flexible, Yet Sterically Demanding Multidentate Phosphine Oxide Ligand. Inorganic Chemistry, 2021, 60, 2437-2445.	4.0	12
97	Nanostructured Ternary FeCrAl Oxide Photocathodes for Water Photoelectrolysis. Journal of the American Chemical Society, 2016, 138, 1860-1867.	13.7	11
98	Scanning Tunneling Microscopy of Electrode Surfaces Using Carbon Composite Tips. Electroanalysis, 2007, 19, 121-128.	2.9	10
99	Thick titania films with hierarchical porosity assembled from ultrasmall titania nanoparticles as photoanodes for dye-sensitized solar cells. New Journal of Chemistry, 2014, 38, 1996-2001.	2.8	10
100	Nanosized Lithium-Rich Cobalt Oxide Particles and Their Transformation to Lithium Cobalt Oxide Cathodes with Optimized High-Rate Morphology. Chemistry of Materials, 2019, 31, 8685-8694.	6.7	10
101	Sn-Doped Hematite for Photoelectrochemical Water Splitting: The Effect of Sn Concentration. Zeitschrift Fur Physikalische Chemie, 2020, 234, 683-698.	2.8	10
102	The influence of hafnium impurities on the electrochemical performance of tantalum substituted Li7La3Zr2O12 solid electrolytes. Ionics, 2022, 28, 53-62.	2.4	10
103	Increasing the performance of all-solid-state Li batteries by infiltration of Li-ion conducting polymer into LFP-LATP composite cathode. Journal of Power Sources, 2022, 543, 231822.	7.8	10
104	Investigation of the pH-Dependent Impact of Sulfonated Polyaniline on Bioelectrocatalytic Activity of Xanthine Dehydrogenase. ACS Catalysis, 2016, 6, 7152-7159.	11.2	9
105	Overcoming the Challenges of Freestanding Tin Oxideâ€Based Composite Anodes to Achieve High Capacity and Increased Cycling Stability. Advanced Functional Materials, 2021, 31, 2106373.	14.9	9
106	Antimony doped tin oxide nanoparticles and their assembly in mesostructured film. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 1759-1763.	0.8	8
107	Flexible freestanding MoS ₂ -based composite paper for energy conversion and storage. Beilstein Journal of Nanotechnology, 2019, 10, 1488-1496.	2.8	8
108	Freestanding LiFe0.2Mn0.8PO4/rGO nanocomposites as high energy density fast charging cathodes for lithium-ion batteries. Materials Today Energy, 2020, 16, 100416.	4.7	8

#	Article	IF	CITATIONS
109	Competing Effects in the Hydration Mechanism of a Garnet-Type Li ₇ La ₃ Zr ₂ O ₁₂ Electrolyte. Chemistry of Materials, 2022, 34, 1473-1480.	6.7	8
110	A facile synthesis of mesoporous crystalline tin oxide films involving a base-triggered formation of sol–gel building blocks. Nanoscale, 2011, 3, 1234.	5.6	7
111	Template-assisted preparation of films of transparent conductive indium tin oxide. Superlattices and Microstructures, 2008, 44, 686-692.	3.1	6
112	Nonagglomerated Iron Oxyhydroxide Akaganeite Nanocrystals Incorporating Extraordinary High Amounts of Different Dopants. Chemistry of Materials, 2017, 29, 7223-7233.	6.7	6
113	Rapid thermal sintering of screen-printed LiCoO2 films. Thin Solid Films, 2022, 749, 139177.	1.8	6
114	The potential-determining reaction of electrogenerated cation radicals of diphenylselenide: dimerization versus disproportionation. Electrochimica Acta, 2001, 46, 807-812.	5.2	5
115	Conductivity enhancement of Al- and Ta-substituted Li7La3Zr2O7 solid electrolytes by nanoparticles. Journal of the European Ceramic Society, 2022, 42, 1033-1041.	5.7	5
116	All-inorganic core–shell silica–titania mesoporous colloidal nanoparticles showing orthogonal functionality. Journal of Materials Chemistry, 2011, 21, 13817.	6.7	4
117	An aminotetracyanocyclopentadienide system: light-induced formation of a thermally stable cyclopentadienyl radical. New Journal of Chemistry, 2020, 44, 72-78.	2.8	4
118	Guidelines to correctly measure the lithium ion conductivity of oxide ceramic electrolytes based on a harmonized testing procedure. Journal of Power Sources, 2022, 531, 231323.	7.8	4
119	Mechanism of soft solution processing formation of alkaline earth metal tungstates: an electrochemical and in situ AFM study. Journal of Solid State Electrochemistry, 2002, 6, 367-373.	2.5	3
120	Sintering of Li-garnets: Impact of Al-incorporation and powder-bed composition on microstructure and ionic conductivity. Open Ceramics, 2022, 10, 100268.	2.0	3
121	Digestion processes and elemental analysis of oxide and sulfide solid electrolytes. Ionics, 2022, 28, 3223-3231.	2.4	3
122	Optimization of the silylation procedure of thin mesoporous SiO2 films with cationic trimethylaminopropylammonium groups. Studies in Surface Science and Catalysis, 2007, 165, 573-577.	1.5	2
123	Surface functionalization of mesoporous antimony doped tin oxide by metalorganic reaction. Materials Chemistry and Physics, 2012, 137, 207-212.	4.0	2
124	Co-Sintering Study of Na0.67[Ni0.1Fe0.1Mn0.8]O2 and NaSICON Electrolyte–Paving the way to High Energy Density All-Solid-State Batteries. Frontiers in Energy Research, 2021, 9, .	2.3	2
125	Charge transport in Sb-doped SnO <inf>2</inf> nanoparticles studied by THz spectroscopy. , 2015, , .		1
126	Guided in Situ Polymerization of MEH-PPV in Mesoporous Titania Photoanodes. ACS Applied Materials & Interfaces, 2015, 7, 10356-10364.	8.0	1

#	Article	IF	CITATIONS
127	Tin Oxide Based Nanomaterials and Their Application as Anodes in Lithium″on Batteries and Beyond. ChemSusChem, 2019, 12, 4092-4092.	6.8	1
128	Nanocelluloseâ€Mediated Transition of Lithiumâ€Rich Pseudoâ€Quaternary Metal Oxide Nanoparticles into Lithium Nickel Cobalt Manganese Oxide (NCM) Nanostructures. ChemNanoMat, 2020, 6, 618-628.	2.8	1
129	A microwaveâ€based oneâ€pot process for homogeneous surface coating: improved electrochemical performance of Li(Ni _{1/3} Mn _{1/3} Co _{1/3})O ₂ with a nanoâ€scaled ZnO:Al layer. Nano Select, 2021, 2, 146-157.	3.7	1
130	Evaporation-Induced Self-Assembly for the Preparation of Porous Metal Oxide Films. , 0, , 283-312.		0
131	Nickel Oxide: Electron-Blocking and Oxygen Evolution Catalyst Layers by Plasma-Enhanced Atomic Layer Deposition of Nickel Oxide (Adv. Mater. Interfaces 16/2018). Advanced Materials Interfaces, 2018, 5, 1870079.	3.7	0
132	Garnet-Based Composite Cathodes for Polymer-Ceramic Solid-State Li Batteries. ECS Meeting Abstracts, 2021, MA2021-02, 1804-1804.	0.0	0
133	(Invited) Solid State Sodium Satteries: From Solid Electrolytes to Functional Device. ECS Meeting Abstracts, 2020, MA2020-02, 1001-1001.	0.0	0
134	Modified Cathode Materials for Garnet Based All-Solid-State Lithium Batteries. ECS Meeting Abstracts, 2020, MA2020-02, 987-987.	0.0	0
135	Ceramic Composite Cathodes for All-Solid-State Lithium Batteries. ECS Meeting Abstracts, 2020, MA2020-02, 994-994.	0.0	0
136	Garnet-Based Composite Cathodes for All Solid-State Li Batteries. ECS Meeting Abstracts, 2021, MA2021-02, 32-32.	0.0	0
137	Garnet-Based Composite Cathodes for All-Solid-State Lithium Batteries. ECS Meeting Abstracts, 2022, MA2022-01, 283-283.	0.0	0
138	Polymer-Garnet-Based Composite Cathodes for Solid-State Li Batteries. ECS Meeting Abstracts, 2022, MA2022-01, 166-166.	0.0	0