
Thierry Lorca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8142360/publications.pdf Version: 2024-02-01

THIEDDYLODCA

#	Article	IF	CITATIONS
1	PP2A-B55: substrates and regulators in the control of cellular functions. Oncogene, 2022, 41, 1-14.	5.9	27
2	The study of the determinants controlling Arpp19 phosphatase-inhibitory activity reveals an Arpp19/PP2A-B55 feedback loop. Nature Communications, 2021, 12, 3565.	12.8	10
3	PP2A-B55 Holoenzyme Regulation and Cancer. Biomolecules, 2020, 10, 1586.	4.0	11
4	ENSA and ARPP19 differentially control cell cycle progression and development. Journal of Cell Biology, 2019, 218, 541-558.	5.2	30
5	Greatwall kinase at a glance. Journal of Cell Science, 2018, 131, .	2.0	43
6	Cyclin A-cdk1-Dependent Phosphorylation of Bora Is the Triggering Factor Promoting Mitotic Entry. Developmental Cell, 2018, 45, 637-650.e7.	7.0	79
7	Arpp19 in prophase I resumption. Cell Cycle, 2017, 16, 1564-1565.	2.6	0
8	Ensa controls S-phase length by modulating Treslin levels. Nature Communications, 2017, 8, 206.	12.8	48
9	The master Greatwall kinase, a critical regulator of mitosis and meiosis. International Journal of Developmental Biology, 2016, 60, 245-254.	0.6	22
10	CDK1 Prevents Unscheduled PLK4-STIL Complex Assembly in Centriole Biogenesis. Current Biology, 2016, 26, 1127-1137.	3.9	68
11	Greatwall dephosphorylation and inactivation upon mitotic exit is triggered by PP1. Journal of Cell Science, 2016, 129, 1329-39.	2.0	56
12	Global Phosphoproteomic Mapping of Early Mitotic Exit in Human Cells Identifies Novel Substrate Dephosphorylation Motifs. Molecular and Cellular Proteomics, 2015, 14, 2194-2212.	3.8	63
13	Greatwall promotes cell transformation by hyperactivating AKT in human malignancies. ELife, 2015, 4, .	6.0	43
14	Partial inhibition of Cdk1 in G ₂ phase overrides the SAC and decouples mitotic events. Cell Cycle, 2014, 13, 1400-1412.	2.6	773
15	Budding Yeast Greatwall and Endosulfines Control Activity and Spatial Regulation of PP2ACdc55 for Timely Mitotic Progression. PLoS Genetics, 2013, 9, e1003575.	3.5	53
16	The Greatwall kinase: a new pathway in the control of the cell cycle. Oncogene, 2013, 32, 537-543.	5.9	55
17	Greatwall is essential to prevent mitotic collapse after nuclear envelope breakdown in mammals. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17374-17379.	7.1	98
18	Deciphering the New Role of the Greatwall/PP2A Pathway in Cell Cycle Control. Genes and Cancer, 2012, 3, 712-720.	1.9	11

THIERRY LORCA

#	Article	IF	CITATIONS
19	CDK-Dependent Potentiation of MPS1 Kinase Activity Is Essential to the Mitotic Checkpoint. Current Biology, 2012, 22, 289-295.	3.9	52
20	Quantitative Live Imaging of Endogenous DNA Replication in Mammalian Cells. PLoS ONE, 2012, 7, e45726.	2.5	66
21	Characterization of the Mechanisms Controlling Greatwall Activity. Molecular and Cellular Biology, 2011, 31, 2262-2275.	2.3	70
22	Constant regulation of both the MPF amplification loop and the Greatwall-PP2A pathway is required for metaphase II arrest and correct entry into the first embryonic cell cycle. Journal of Cell Science, 2010, 123, 2281-2291.	2.0	76
23	The Substrate of Greatwall Kinase, Arpp19, Controls Mitosis by Inhibiting Protein Phosphatase 2A. Science, 2010, 330, 1673-1677.	12.6	377
24	Loss of human Greatwall results in G2 arrest and multiple mitotic defects due to deregulation of the cyclin B-Cdc2/PP2A balance. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12564-12569.	7.1	652
25	Greatwall maintains mitosis through regulation of PP2A. EMBO Journal, 2009, 28, 2786-2793.	7.8	195
26	Pin1 stabilizes Emi1 during G2 phase by preventing its association with SCF βtrcp. EMBO Reports, 2007, 8, 91-98.	4.5	45
27	Meiotic regulation of the CDK activator RINGO/Speedy by ubiquitin-proteasome-mediated processing and degradation. Nature Cell Biology, 2006, 8, 1084-1094.	10.3	46
28	MyoD undergoes a distinct G2/M-specific regulation in muscle cells. Experimental Cell Research, 2006, 312, 3999-4010.	2.6	22
29	Ubiquitin-Mediated Protein Degradation in Xenopus Egg Extracts. Methods in Molecular Biology, 2006, 322, 223-234.	0.9	1
30	Exploring meiotic division in Cargèse. EMBO Reports, 2005, 6, 821-825.	4.5	4
31	The anaphase-promoting complex: a key factor in the regulation of cell cycle. Oncogene, 2005, 24, 314-325.	5.9	235
32	Multiple phosphorylation events control mitotic degradation of the muscle transcription factor Myf5. BMC Biochemistry, 2005, 6, 27.	4.4	20
33	Differential regulation of Cdc2 and Aurora-A in Xenopus oocytes: a crucial role of phosphatase 2A. Journal of Cell Science, 2005, 118, 2485-2494.	2.0	31
34	Kinetochore Localization of Spindle Checkpoint Proteins: Who Controls Whom?. Molecular Biology of the Cell, 2004, 15, 4584-4596.	2.1	181
35	Bovine Papillomavirus Replicative Helicase E1 Is a Target of the Ubiquitin Ligase APC. Journal of Virology, 2004, 78, 2615-2619.	3.4	19
36	XCdh1 is involved in progesterone-induced oocyte maturation. Developmental Biology, 2004, 272, 66-75.	2.0	16

THIERRY LORCA

#	Article	IF	CITATIONS
37	Alterations of anaphase-promoting complex genes in human colon cancer cells. Oncogene, 2003, 22, 1486-1490.	5.9	98
38	Involvement of Aurora A Kinase during Meiosis I-II Transition inXenopus Oocytes. Journal of Biological Chemistry, 2003, 278, 2236-2241.	3.4	45
39	Xkid Is Degraded in a D-Box, KEN-Box, and A-Box-Independent Pathway. Molecular and Cellular Biology, 2003, 23, 4126-4138.	2.3	69
40	Cdc2-Cyclin B Triggers H3 Kinase Activation of Aurora-A in Xenopus Oocytes. Journal of Biological Chemistry, 2003, 278, 21439-21449.	3.4	55
41	APC/Fizzyâ€Related targets Auroraâ€A kinase for proteolysis. EMBO Reports, 2002, 3, 457-462.	4.5	144
42	The Dâ€Boxâ€activating domain (DAD) is a new proteolysis signal that stimulates the silent Dâ€Box sequence of Auroraâ€A. EMBO Reports, 2002, 3, 1209-1214.	4.5	79
43	Mps1 Is a Kinetochore-Associated Kinase Essential for the Vertebrate Mitotic Checkpoint. Cell, 2001, 106, 83-93.	28.9	303
44	ContrÃ1e de la transition métaphase-anaphase. Medecine/Sciences, 2001, 17, 1325-1326.	0.2	0
45	The APC is dispensable for first meiotic anaphase in Xenopus oocytes. Nature Cell Biology, 2001, 3, 83-87.	10.3	128
46	c-Mos and cyclin B/cdc2 connections during Xenopus oocyte maturation. Biology of the Cell, 2001, 93, 15-25.	2.0	25
47	Interaction between Cyclin T1 and SCF SKP2 Targets CDK9 for Ubiquitination and Degradation by the Proteasome. Molecular and Cellular Biology, 2001, 21, 7956-7970.	2.3	91
48	Cyclin B/cdc2 Induces c-Mos Stability by Direct Phosphorylation in <i>Xenopus</i> Oocytes. Molecular Biology of the Cell, 2001, 12, 2660-2671.	2.1	66
49	The polo-like kinase Plx1 prevents premature inactivation of the APCFizzy-dependent pathway in the early Xenopus cell cycle. Oncogene, 2000, 19, 3782-3790.	5.9	22
50	Part of Xenopus Translin Is Localized in the Centrosomes during Mitosis. Biochemical and Biophysical Research Communications, 2000, 276, 515-523.	2.1	20
51	The Xenopus XMAP215 and Its Human Homologue TOG Proteins Interact with Cyclin B1 to Target p34cdc2 to Microtubules during Mitosis. Experimental Cell Research, 2000, 254, 249-256.	2.6	41
52	Involvement of the Ca2+/calmodulin-dependent protein kinase II pathway in the Ca2+-mediated regulation of the capacitative Ca2+ entry in Xenopus oocytes. Biochemical Journal, 1997, 322, 267-272.	3.7	22
53	Ca2+ is involved through type II calmodulin-dependent protein kinase in cyclin degradation and exit from metaphase. Biochimica Et Biophysica Acta - Molecular Cell Research, 1994, 1223, 325-332.	4.1	52
54	Calmodulin-dependent protein kinase II mediates inactivation of MPF and CSF upon fertilization of Xenopus eggs. Nature, 1993, 366, 270-273.	27.8	447

#	Article	IF	CITATIONS
55	Cyclin A-Cys41 does not undergo cell cycle-dependent degradation inXenopusextracts. FEBS Letters, 1992, 306, 90-93.	2.8	44