## Sheila M Donnelly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8141143/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Thioredoxin Peroxidase Secreted by Fasciola hepatica Induces the Alternative Activation of Macrophages. Infection and Immunity, 2005, 73, 166-173.                                                                                        | 2.2 | 258       |
| 2  | An Integrated Transcriptomics and Proteomics Analysis of the Secretome of the Helminth Pathogen<br>Fasciola hepatica. Molecular and Cellular Proteomics, 2009, 8, 1891-1907.                                                              | 3.8 | 244       |
| 3  | Fasciola hepatica cathepsin L-like proteases: biology, function, and potential in the development of first generation liver fluke vaccines. International Journal for Parasitology, 2003, 33, 1173-1181.                                  | 3.1 | 238       |
| 4  | The choice of phorbol 12-myristate 13-acetate differentiation protocol influences the response of<br>THP-1 macrophages to a pro-inflammatory stimulus. Journal of Immunological Methods, 2016, 430,<br>64-70.                             | 1.4 | 236       |
| 5  | Helminth 2â€Cys peroxiredoxin drives Th2 responses through a mechanism involving alternatively<br>activated macrophages. FASEB Journal, 2008, 22, 4022-4032.                                                                              | 0.5 | 210       |
| 6  | Immunomodulatory molecules of Fasciola hepatica: Candidates for both vaccine and immunotherapeutic development. Veterinary Parasitology, 2013, 195, 272-285.                                                                              | 1.8 | 162       |
| 7  | Fasciola hepatica vaccine: We may not be there yet but we're on the right road. Veterinary<br>Parasitology, 2015, 208, 101-111.                                                                                                           | 1.8 | 158       |
| 8  | Cathepsin L1, the Major Protease Involved in Liver Fluke (Fasciola hepatica) Virulence. Journal of<br>Biological Chemistry, 2004, 279, 17038-17046.                                                                                       | 3.4 | 141       |
| 9  | Structural basis for the inhibition of the essential <i>Plasmodium falciparum</i> M1 neutral<br>aminopeptidase. Proceedings of the National Academy of Sciences of the United States of America,<br>2009, 106, 2537-2542.                 | 7.1 | 133       |
| 10 | Helminth Cysteine Proteases Inhibit TRIF-dependent Activation of Macrophages via Degradation of TLR3.<br>Journal of Biological Chemistry, 2010, 285, 3383-3392.                                                                           | 3.4 | 123       |
| 11 | Helminth pathogen cathepsin proteases: it's a family affair. Trends in Biochemical Sciences, 2008, 33,<br>601-608.                                                                                                                        | 7.5 | 122       |
| 12 | Major Secretory Antigens of the Helminth <i>Fasciola hepatica</i> Activate a Suppressive Dendritic<br>Cell Phenotype That Attenuates Th17 Cells but Fails To Activate Th2 Immune Responses. Infection and<br>Immunity, 2010, 78, 793-801. | 2.2 | 119       |
| 13 | Proteomics and Phylogenetic Analysis of the Cathepsin L Protease Family of the Helminth Pathogen<br>Fasciola hepatica. Molecular and Cellular Proteomics, 2008, 7, 1111-1123.                                                             | 3.8 | 118       |
| 14 | A Family of Helminth Molecules that Modulate Innate Cell Responses via Molecular Mimicry of Host<br>Antimicrobial Peptides. PLoS Pathogens, 2011, 7, e1002042.                                                                            | 4.7 | 115       |
| 15 | Characterization of the Plasmodium falciparum M17 Leucyl Aminopeptidase. Journal of Biological<br>Chemistry, 2007, 282, 2069-2080.                                                                                                        | 3.4 | 111       |
| 16 | Protection of cattle against a natural infection of Fasciola hepatica by vaccination with recombinant cathepsin L1 (rFhCL1). Vaccine, 2010, 28, 5551-5557.                                                                                | 3.8 | 111       |
| 17 | Peroxiredoxin: a central player in immune modulation. Parasite Immunology, 2010, 32, 305-313.                                                                                                                                             | 1.5 | 102       |
| 18 | Structural and Functional Relationships in the Virulence-associated Cathepsin L Proteases of the<br>Parasitic Liver Fluke, Fasciola hepatica. Journal of Biological Chemistry, 2008, 283, 9896-9908.                                      | 3.4 | 90        |

SHEILA M DONNELLY

| #  | Article                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Helminth vaccines: from mining genomic information for vaccine targets to systems used for protein expression. International Journal for Parasitology, 2003, 33, 621-640.                                                                                        | 3.1  | 88        |
| 20 | Leucine aminopeptidase of the human blood flukes, Schistosoma mansoni and Schistosoma japonicum.<br>International Journal for Parasitology, 2004, 34, 703-714.                                                                                                   | 3.1  | 78        |
| 21 | Infection by the Helminth Parasite Fasciola hepatica Requires Rapid Regulation of Metabolic,<br>Virulence, and Invasive Factors to Adjust to Its Mammalian Host. Molecular and Cellular Proteomics,<br>2018, 17, 792-809.                                        | 3.8  | 76        |
| 22 | A helminth cathelicidinâ€like protein suppresses antigen processing and presentation in macrophages <i>via</i> inhibition of lysosomal vATPase. FASEB Journal, 2012, 26, 4614-4627.                                                                              | 0.5  | 71        |
| 23 | The Importance of pH in Regulating the Function of the Fasciola hepatica Cathepsin L1 Cysteine<br>Protease. PLoS Neglected Tropical Diseases, 2009, 3, e369.                                                                                                     | 3.0  | 69        |
| 24 | Secreted Proteins from the Helminth Fasciola hepatica Inhibit the Initiation of Autoreactive T Cell<br>Responses and Prevent Diabetes in the NOD Mouse. PLoS ONE, 2014, 9, e86289.                                                                               | 2.5  | 59        |
| 25 | Cysteine Peptidases as Schistosomiasis Vaccines with Inbuilt Adjuvanticity. PLoS ONE, 2014, 9, e85401.                                                                                                                                                           | 2.5  | 57        |
| 26 | The immune modulatory peptide FhHDMâ€1 secreted by the helminth Fasciola hepatica prevents NLRP3 inflammasome activation by inhibiting endolysosomal acidification in macrophages. FASEB Journal, 2017, 31, 85-95.                                               | 0.5  | 54        |
| 27 | Whole-Cell but Not Acellular Pertussis Vaccines Induce Convulsive Activity in Mice: Evidence of a Role for Toxin-Induced Interleukin-1β in a New Murine Model for Analysis of Neuronal Side Effects of Vaccination. Infection and Immunity, 2001, 69, 4217-4223. | 2.2  | 53        |
| 28 | Proteases in Helminth- and Allergen- Induced Inflammatory Responses. , 2005, 90, 45-64.                                                                                                                                                                          |      | 50        |
| 29 | Helminths at mucosal barriers—interaction with the immune system. Advanced Drug Delivery Reviews,<br>2004, 56, 853-868.                                                                                                                                          | 13.7 | 48        |
| 30 | The M18 Aspartyl Aminopeptidase of the Human Malaria Parasite Plasmodium falciparum. Journal of<br>Biological Chemistry, 2007, 282, 30817-30826.                                                                                                                 | 3.4  | 48        |
| 31 | The M17 Leucine Aminopeptidase of the Malaria Parasite <i>Plasmodium falciparum</i> : Importance of Active Site Metal Ions in the Binding of Substrates and Inhibitors. Biochemistry, 2009, 48, 5435-5439.                                                       | 2.5  | 47        |
| 32 | The cathepsin-like cysteine peptidases of trematodes of the genus Fasciola. Advances in Parasitology, 2019, 104, 113-164.                                                                                                                                        | 3.2  | 46        |
| 33 | Fasciola hepatica: The therapeutic potential of a worm secretome. International Journal for Parasitology, 2013, 43, 283-291.                                                                                                                                     | 3.1  | 43        |
| 34 | Immunological Interactions between 2 Common Pathogens, Th1-Inducing Protozoan Toxoplasma gondii<br>and the Th2-Inducing Helminth Fasciola hepatica. PLoS ONE, 2009, 4, e5692.                                                                                    | 2.5  | 42        |
| 35 | <i>Fasciola hepatica</i> tegumental antigens indirectly induce an M2 macrophageâ€like phenotype <i>in<br/>vivo</i> . Parasite Immunology, 2014, 36, 531-539                                                                                                      | 1.5  | 39        |
| 36 | Biochemical characterisation of the recombinant peroxiredoxin (FhePrx) of the liver fluke,Fasciola hepatica. FEBS Letters, 2006, 580, 5016-5022.                                                                                                                 | 2.8  | 37        |

SHEILA M DONNELLY

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The enigmatic asparaginyl endopeptidase of helminth parasites. Trends in Parasitology, 2009, 25, 59-61.                                                                                                                           | 3.3 | 37        |
| 38 | Selective induction of the Notch ligand Jaggedâ€1 in macrophages by soluble egg antigen from<br><i>Schistosoma mansoni</i> involves ERK signalling. Immunology, 2009, 127, 326-337.                                               | 4.4 | 35        |
| 39 | Cathelicidin-like Helminth Defence Molecules (HDMs): Absence of Cytotoxic, Anti-microbial and<br>Anti-protozoan Activities Imply a Specific Adaptation to Immune Modulation. PLoS Neglected Tropical<br>Diseases, 2013, 7, e2307. | 3.0 | 34        |
| 40 | A parasite-derived 68-mer peptide ameliorates autoimmune disease in murine models of Type 1 diabetes and multiple sclerosis. Scientific Reports, 2016, 6, 37789.                                                                  | 3.3 | 34        |
| 41 | Induction of protective immune responses against schistosomiasis using functionally active cysteine peptidases. Frontiers in Genetics, 2014, 5, 119.                                                                              | 2.3 | 33        |
| 42 | Immune signatures of pathogenesis in the peritoneal compartment during early infection of sheep with Fasciola hepatica. Scientific Reports, 2017, 7, 2782.                                                                        | 3.3 | 33        |
| 43 | The Major Secreted Cathepsin L1 Protease of the Liver Fluke, Fasciola hepatica. Journal of Biological<br>Chemistry, 2007, 282, 16532-16543.                                                                                       | 3.4 | 30        |
| 44 | Selection of reliable reference genes for the normalisation of gene expression levels following time course LPS stimulation of murine bone marrow derived macrophages. BMC Immunology, 2017, 18, 43.                              | 2.2 | 28        |
| 45 | Complementary transcriptomic and proteomic analyses reveal the cellular and molecular processes that drive growth and development of Fasciola hepatica in the host liver. BMC Genomics, 2021, 22, 46.                             | 2.8 | 28        |
| 46 | How Pathogen-Derived Cysteine Proteases Modulate Host Immune Responses. Advances in Experimental<br>Medicine and Biology, 2011, 712, 192-207.                                                                                     | 1.6 | 26        |
| 47 | Induction of inflammatory cytokines in the brain following respiratory infection with Bordetella pertussis. Journal of Neuroimmunology, 2000, 102, 172-181.                                                                       | 2.3 | 25        |
| 48 | Worm secretory molecules are causing alarm. Trends in Parasitology, 2010, 26, 371-372.                                                                                                                                            | 3.3 | 25        |
| 49 | Aminopeptidases of Malaria Parasites: New Targets for Chemotherapy. Infectious Disorders - Drug<br>Targets, 2010, 10, 217-225.                                                                                                    | 0.8 | 25        |
| 50 | Helminth defence molecules—immunomodulators designed by parasites!. Frontiers in Microbiology,<br>2013, 4, 296.                                                                                                                   | 3.5 | 25        |
| 51 | Targeting the <scp>PI3K</scp> /Akt signaling pathway in pancreatic βâ€cells to enhance their survival and function: An emerging therapeutic strategy for type 1 diabetes. Journal of Diabetes, 2022, 14, 247-260.                 | 1.8 | 25        |
| 52 | Glycerol-induced seizure. NeuroReport, 1999, 10, 1821-1825.                                                                                                                                                                       | 1.2 | 24        |
| 53 | Defense peptides secreted by helminth pathogens: antimicrobial and/or immunomodulator molecules?.<br>Frontiers in Immunology, 2012, 3, 269.                                                                                       | 4.8 | 23        |
| 54 | Fasciola hepatica hijacks host macrophage miRNA machinery to modulate early innate immune responses. Scientific Reports, 2021, 11, 6712.                                                                                          | 3.3 | 23        |

SHEILA M DONNELLY

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | De-glycosylation of Pichia pastoris-produced Schistosoma mansoni cathepsin B eliminates non-specific<br>reactivity with IgG in normal human serum. Journal of Immunological Methods, 2005, 304, 151-157.                             | 1.4 | 21        |
| 56 | Interleukin-1β-dependent changes in the hippocampus following parenteral immunization with a whole cell pertussis vaccine. Journal of Neuroimmunology, 2000, 111, 68-76.                                                             | 2.3 | 20        |
| 57 | Squamous cell carcinoma antigen 1 is an inhibitor of parasiteâ€derived cysteine proteases. FEBS Letters,<br>2007, 581, 4260-4264.                                                                                                    | 2.8 | 19        |
| 58 | A parasitic helminth-derived peptide that targets the macrophage lysosome is a novel therapeutic option for autoimmune disease. Immunobiology, 2015, 220, 262-269.                                                                   | 1.9 | 19        |
| 59 | Proinflammatory Cytokines in the Adverse Systemic and Neurologic Effects Associated with<br>Parenteral Injection of a Whole Cell Pertussis Vaccine. Annals of the New York Academy of Sciences,<br>1998, 856, 274-277.               | 3.8 | 18        |
| 60 | The Impact of Helminth Infection on the Incidence of Metabolic Syndrome: A Systematic Review and Meta-Analysis. Frontiers in Endocrinology, 2021, 12, 728396.                                                                        | 3.5 | 18        |
| 61 | Novel Therapeutics for Multiple Sclerosis Designed by Parasitic Worms. International Journal of<br>Molecular Sciences, 2017, 18, 2141.                                                                                               | 4.1 | 17        |
| 62 | Proteomic Analysis of Extracellular HMGB1 Identifies Binding Partners and Exposes Its Potential Role<br>in Airway Epithelial Cell Homeostasis. Journal of Proteome Research, 2018, 17, 33-45.                                        | 3.7 | 14        |
| 63 | RAGE and TLR4 differentially regulate airway hyperresponsiveness: Implications for COPD. Allergy:<br>European Journal of Allergy and Clinical Immunology, 2021, 76, 1123-1135.                                                       | 5.7 | 14        |
| 64 | An Evaluation of the Fasciola hepatica miRnome Predicts a Targeted Regulation of Mammalian Innate<br>Immune Responses. Frontiers in Immunology, 2020, 11, 608686.                                                                    | 4.8 | 12        |
| 65 | Stage-specific miRNAs regulate gene expression associated with growth, development and parasite-host interaction during the intra-mammalian migration of the zoonotic helminth parasite Fasciola hepatica. BMC Genomics, 2022, 23, . | 2.8 | 10        |
| 66 | The parasitic 68-mer peptide FhHDM-1 inhibits mixed granulocytic inflammation and airway<br>hyperreactivity in experimental asthma. Journal of Allergy and Clinical Immunology, 2018, 141, 2316-2319.                                | 2.9 | 9         |
| 67 | Schistosoma mansoni immunomodulatory molecule Sm16/SPO-1/SmSLP is a member of the trematode-specific helminth defence molecules (HDMs). PLoS Neglected Tropical Diseases, 2020, 14, e0008470.                                        | 3.0 | 8         |
| 68 | The parasite-derived peptide FhHDM-1 activates the PI3K/Akt pathway to prevent cytokine-induced apoptosis of β-cells. Journal of Molecular Medicine, 2021, 99, 1605-1621.                                                            | 3.9 | 7         |
| 69 | Exploring the role of macrophages in determining the pathogenesis of liver fluke infection.<br>Parasitology, 2022, 149, 1364-1373.                                                                                                   | 1.5 | 6         |
| 70 | Targeting the master regulator mTOR: a new approach to prevent the neurological of consequences of parasitic infections?. Parasites and Vectors, 2017, 10, 581.                                                                      | 2.5 | 5         |
| 71 | Effectiveness of Helminth Therapy in the Prevention of Allograft Rejection: A Systematic Review of Allogeneic Transplantation. Frontiers in Immunology, 2020, 11, 1604.                                                              | 4.8 | 4         |
| 72 | Antimicrobial peptides: utility players in innate immunity. Frontiers in Immunology, 2012, 3, 325.                                                                                                                                   | 4.8 | 3         |

| #  | Article                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Commandeering the mammalian Ago2 miRNA network: a newly discovered mechanism of helminth immunomodulation. Trends in Parasitology, 2021, 37, 1031-1033. | 3.3 | 3         |

Applying 'omics' technologies to understand Fasciola spp. biology., 2021, 338-378.