Sixun Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8140407/publications.pdf

Version: 2024-02-01

220 papers 7,644 citations

44069 48 h-index 75 g-index

221 all docs

221 docs citations

times ranked

221

4340 citing authors

#	Article	lF	CITATIONS
1	Organic–Inorganic Polyureas with POSS Cages in the Main Chains via Polycondensation of Diamines with Carbon Dioxide. ACS Applied Polymer Materials, 2022, 4, 509-520.	4.4	11
2	Block Copolymer Networks Composed of Poly(ε-caprolactone) and Polyethylene with Triple Shape Memory Properties. Chinese Journal of Polymer Science (English Edition), 2022, 40, 185-196.	3.8	8
3	Self-healable and reprocessable networks involving diblock copolymer and hindered urea bonds. Polymer, 2022, 242, 124591.	3.8	11
4	Nanocomposites of polyethylene with polyhedral oligomeric silsesquioxane: from thermoplastics to vitrimers through silyl ether metathesis. Materials Today Chemistry, 2022, 24, 100759.	3 . 5	12
5	Nanocomposites of Polyhydroxyurethane with POSS Microdomains: Synthesis via Non-Isocyanate Approach, Morphologies and Reprocessing Properties. Polymers, 2022, 14, 1331.	4.5	16
6	Poly(hydroxyurethaneâ€∢i>coâ€thiourethane)s crossâ€linked with disulfide bonds: Synthesis via isocyanateâ€free approach, thermomechanical and reprocessing properties. Journal of Polymer Science, 2022, 60, 2756-2768.	3.8	8
7	Incorporation of crosslinked polydicyclopentadiene nanoparticles into epoxy thermosets via ring opening metathesis polymerization-induced self-assembly. Polymer, 2022, 255, 125160.	3.8	1
8	Nanostructured thermosets involving epoxy and poly(ionic liquid)-Containing diblock copolymer. Polymer, 2021, 213, 123293.	3.8	4
9	Polyhydroxyurethane thermosets from novolac epoxide: Synthesis and its nanostructured blends with poly(trifluoroethylacrylate)-block-poly(N-vinylpyrrolidone) diblock copolymer. Polymer, 2021, 213, 123314.	3.8	6
10	Polyethylenes functionalized with ureidopyrimidone: synthesis, thermomechanical properties and shape memory behavior. Polymer Chemistry, 2021, 12, 3564-3575.	3.9	2
11	2,6-Bis(1-butyl-1H-1,2,3-triazol-1-yl)pyridine-capped poly(N-vinylpyrrolidone)s: synthesis, complexation with metal ions, and self-assembly behavior. Colloid and Polymer Science, 2021, 299, 705-718.	2.1	O
12	Polythiourethanes Crosslinked with Dynamic Disulfide Bonds: Synthesis via Nonisocyanate Approach, Thermomechanical and Reprocessing Properties. Macromolecular Rapid Communications, 2021, 42, e2000718.	3.9	16
13	Nanocomposites of polyhydroxyurethane with nanocrystalline cellulose: Synthesis, thermomechanical and reprocessing properties. European Polymer Journal, 2021, 149, 110287.	5.4	13
14	Crosslinked Polydicyclopentadiene Nanoparticles via Ringâ€Opening Metathesis Polymerizationâ€Induced Selfâ€Assembly Approach. Macromolecular Rapid Communications, 2021, 42, 2100155.	3.9	4
15	Toughness improvement of epoxy thermosets with cellulose nanocrystals. Polymer International, 2021, 70, 1640-1648.	3.1	9
16	Shape recovery and reprocessable polyurethanes crosslinked with double decker silsesquioxane via Diels-Alder reaction. Polymer, 2021, 230, 124042.	3.8	14
17	Nanocomposites of polyhydroxyurethane with Fe3O4 nanoparticles: Synthesis, shape memory and reprocessing properties. Composites Science and Technology, 2021, 215, 109009.	7.8	21
18	Reprocessed and shape memory networks involving poly(hydroxyl ether ester) and polydimethylsiloxane through Diels-Alder reaction. European Polymer Journal, 2021, 160, 110811.	5.4	11

#	Article	IF	Citations
19	Thermomechanical, surface and shape memory properties of thermosetting blends of epoxy with Poly(ethylene oxide): An impact of POSS microdomain formation. Materials Chemistry and Physics, 2020, 240, 122183.	4.0	10
20	Poly(hydroxyl urethane)s with Double Decker Silsesquioxanes in the Main Chains: Synthesis, Shape Recovery, and Reprocessing Properties. Macromolecules, 2020, 53, 434-444.	4.8	45
21	Shape Memory and Self-Healing Nanocomposites with POSS–POSS Interactions and Quadruple Hydrogen Bonds. ACS Applied Polymer Materials, 2020, 2, 3327-3338.	4.4	22
22	Organic–Inorganic Polycyclooctadienes with Double-Decker Silsesquioxanes in the Main Chains: Synthesis, Self-Healing, and Shape Memory Properties Regulated with Quadruple Hydrogen Bonds. Macromolecules, 2020, 53, 7119-7131.	4.8	27
23	Polyethylene telechelics with POSS termini: synthesis, morphologies and shape memory properties. Polymer Chemistry, 2020, 11, 5819-5832.	3.9	14
24	Transformation of Commodity Poly(hydroxyether of bisphenol A) into Vitrimers via Post Crosslinking with Hindered Urea Bonds. Chinese Journal of Polymer Science (English Edition), 2020, 38, 915-920.	3.8	11
25	Nanocomposites of Poly(hydroxyurethane)s with Multiwalled Carbon Nanotubes: Synthesis, Shape Memory, and Reprocessing Properties. ACS Applied Polymer Materials, 2020, 2, 1711-1721.	4.4	22
26	Fluorescence Enhancement Induced by Curing Reaction in Nanostructured Epoxy Thermosets Containing a Diblock Copolymer. Journal of Physical Chemistry B, 2019, 123, 6282-6289.	2.6	6
27	Investigation of Azobenzene Photoisomerization Effect on Morphologies and Properties of Nanostructured Thermosets Involving Epoxy and a Diblock Copolymer. Journal of Physical Chemistry B, 2019, 123, 10110-10123.	2.6	3
28	Toughening of epoxy thermosets with polystyrene―block â€polybutadiene―block ―polystyrene triblock copolymer via formation of nanostructures. Polymer Engineering and Science, 2019, 59, 2387-2396.	3.1	7
29	Organic–Inorganic Linear Segmented Polyurethanes Simultaneously Having Shape Recovery and Self-Healing Properties. ACS Applied Polymer Materials, 2019, 1, 3174-3184.	4.4	36
30	Shape memory and self-healing properties of polymer-grafted Fe3O4 nanocomposites implemented with supramolecular quadruple hydrogen bonds. Polymer, 2019, 172, 404-414.	3.8	27
31	Synthesis, self-assembly and self-healing properties of organic–inorganic ABA triblock copolymers with poly(POSS acrylate) endblocks. Polymer Chemistry, 2019, 10, 2424-2435.	3.9	15
32	Shape Memory and Self-Healing Properties of Poly(acrylate amide) Elastomers Reinforced with Polyhedral Oligomeric Silsesquioxanes. ACS Applied Polymer Materials, 2019, 1, 359-368.	4.4	19
33	Polyhedral oligomeric silsesquioxane-capped poly(N-vinyl pyrrolidone) amphiphiles: synthesis, self-assembly, and use as porogen of nanoporous poly(vinylidene fluoride). Colloid and Polymer Science, 2019, 297, 141-153.	2.1	5
34	Formation of POSS-POSS interactions in polyurethanes: From synthesis, morphologies to shape memory properties of materials. Polymer, 2019, 160, 82-92.	3.8	38
35	Formation of Poly(ε-caprolactone) Networks via Supramolecular Hydrogen Bonding Interactions. Chinese Journal of Polymer Science (English Edition), 2019, 37, 197-207.	3.8	18
36	A design of shape memory networks of poly(εâ€caprolactone)s via POSSâ€POSS interactions. Polymers for Advanced Technologies, 2019, 30, 713-725.	3.2	12

#	Article	IF	CITATIONS
37	Photoluminescent polymeric micelles from poly(ethylene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 747 Td of Chemistry, 2018, 42, 7283-7292.	(oxide)- <i 2.8</i 	>block-pc 6
38	Morphologies and dielectric properties of epoxy thermosets containing poly(N-vinylcarbazole), fullerene-C60 and their charge transfer complex nanophases. Polymer, 2018, 138, 113-123.	3.8	12
39	Organic–inorganic polyurethanes with double decker silsesquioxanes in the main chains: Morphologies, surface hydrophobicity, and shape memory properties. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 893-906.	2.1	28
40	Poly(vinylidene fluoride)-block-poly(N-vinylpyrrolidone) diblock copolymers: Synthesis via sequential RAFT/MADIX polymerization and self-assembly behavior. Polymer, 2018, 142, 61-71.	3.8	13
41	Organic–inorganic polyimide nanocomposites containing a tetrafunctional polyhedral oligomeric silsesquioxane amine: synthesis, morphology and thermomechanical properties. Polymer International, 2018, 67, 301-312.	3.1	19
42	Epoxy toughening via formation of polyisoprene nanophases with amphiphilic diblock copolymer. European Polymer Journal, 2018, 98, 321-329.	5.4	21
43	Polybenzoxazine nanocomposites containing 3,13â€Diglycidyl doubleâ€decker silsesquioxane. Polymer Composites, 2017, 38, 827-836.	4.6	7
44	Physically crossâ€linked networks of POSSâ€capped poly(acrylate amide)s: Synthesis, morphologies, and shape memory behavior. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 587-600.	2.1	32
45	Organic-inorganic polybenzoxazine copolymers with double decker silsesquioxanes in the main chains: Synthesis and thermally activated ring-opening polymerization behavior. Polymer, 2017, 109, 254-265.	3.8	41
46	Polystyrene-block-polyethylene-block-polystyrene triblock copolymers: Synthesis and crystallization-driven self-assembly behavior. Polymer, 2017, 128, 1-11.	3.8	17
47	Synthesis and microphase separation behavior of random, mixed cylindrical brush copolymers bearing polystyrene and poly($\hat{l}\mu$ -caprolactone) side chains. Chinese Journal of Polymer Science (English Edition), 2017, 35, 1572-1586.	3.8	7
48	Synthesis of POSSâ€terminated polycyclooctadiene telechelics via ringâ€opening metathesis polymerization. Journal of Polymer Science Part A, 2017, 55, 223-233.	2.3	16
49	Organic-inorganic Polybenzoxazine Nanocomposites. Current Applied Polymer Science, 2017, 1, 19-34.	0.2	0
50	Meet Our Editor-in-Chief. Current Applied Polymer Science, 2017, 1, 1-1.	0.2	11
51	Mechanical Properties of Epoxy/Block-Copolymer Blends. , 2017, , 1067-1095.		2
52	Hyperbranched block copolymer from <scp>AB</scp> ₂ macromonomer: Synthesis and its reactionâ€induced microphase separation in epoxy thermosets. Journal of Polymer Science Part A, 2016, 54, 368-380.	2.3	20
53	Enhancement of dielectric constants of epoxy thermosets via a fine dispersion of barium titanate nanoparticles. Journal of Applied Polymer Science, 2016, 133, .	2.6	4
54	Organic–inorganic poly(<i>N</i> â€vinylpyrrolidone) copolymers with doubleâ€decker silsesquioxane in the main chains: Synthesis, glass transition, and selfâ€assembly behavior. Journal of Polymer Science Part A, 2016, 54, 2949-2961.	2.3	13

#	Article	IF	CITATIONS
55	Organic–Inorganic Nanocomposites via Self-Assembly of an Amphiphilic Triblock Copolymer Bearing a Poly(butadiene- <i>g</i> -POSS) Subchain in Epoxy Thermosets: Morphologies, Surface Hydrophobicity, and Dielectric Properties. Journal of Physical Chemistry B, 2016, 120, 12003-12014.	2.6	18
56	A novel functionalized stereoregular macrocyclic oligomeric silsesquioxane: synthesis and its fast self-crosslinking via thiol-ene radical addition polymerization. RSC Advances, 2016, 6, 87802-87807.	3. 6	4
57	Photophysical and dielectric properties of nanostructured epoxy thermosets containing poly(N-vinylcarbazole) nanophases. Polymer, 2016, 98, 344-352.	3.8	12
58	Synthesis and characterization of mesoporous silica monoliths with polystyrene homopolymers as porogens. RSC Advances, 2016, 6, 105840-105853.	3.6	8
59	Mesoporous Carbons from Nanostructured Phenolic Thermosets Containing Poly(styrene-alt-maleic) Tj ETQq1 1 2016, 55, 11502-11511.	0.784314 3.7	rgBT Overlo
60	Poly(<scp><i>N</i></scp> â€vinyl pyrrolidone)â€ <i>block</i> â€Poly(<scp><i>N</i></scp> â€vinyl) Tj ETQq0 0 0 <scp>RAFT</scp> / <scp>MADIX</scp> process, selfâ€assembly behavior, and photophysical properties. Journal of Polymer Science Part A, 2016, 54, 1852-1863.	rgBT /Ove 2 . 3	rlock 10 Tf 50 8
61	Nanostructured Epoxy Thermosets Containing Poly(vinylidene fluoride): Preparation, Morphologies, and Dielectric Properties. Industrial & Engineering Chemistry Research, 2016, 55, 586-596.	3.7	11
62	Organic–inorganic polyimides with double decker silsesquioxane in the main chains. Polymer Chemistry, 2016, 7, 1158-1167.	3.9	52
63	Nanostructured thermosets containing π-conjugated polymer nanophases: Morphology, dielectric and thermal conductive properties. Polymer, 2015, 69, 193-203.	3.8	16
64	Mechanical Properties of Epoxy/Block Copolymer Blends. , 2015, , 1-29.		1
65	Polystyrene- <i>block</i> -Polybutadiene- <i>block</i> -Polystyrene Triblock Copolymer Meets Silica: From Modification of Copolymer to Formation of Mesoporous Silica. Industrial & Engineering Chemistry Research, 2015, 54, 6454-6466.	3.7	14
66	Photoluminescent epoxy microspheres: preparation, surface functionalization via grafting polymerization and photophysical properties. RSC Advances, 2015, 5, 77922-77931.	3.6	9
67	A stereoregular macrocyclic oligomeric silsesquioxane bearing epoxide groups: synthesis and its nanocomposites with polybenzoxazine. RSC Advances, 2015, 5, 77274-77287.	3.6	9
68	Cylindrical brush copolymer bearing polystyrene-block-poly($\hat{l}\mu$ -caprolactone) diblock side chains: Synthesis via a sequential grafting-from polymerization approach and its formation of fibrillar nanophases in epoxy thermosets. Polymer, 2015, 79, 99-109.	3.8	6
69	Formation of nanophases in epoxy thermosets containing ABC and ACB triblock copolymers: A comparative investigation. Polymer, 2015, 80, 146-158.	3.8	9
70	Poly(Îμ-caprolactone)-Grafted Fe ₃ O ₄ Nanoparticles: Preparation and Superparamagnetic Nanocomposites with Epoxy Thermosets. Industrial & Description of the Research, 2015, 54, 171-180.	3.7	22
71	Synthesis and characterization of bead-like poly(N-isopropylacrylamide) copolymers with double decker silsesquioxane in the main chains. Polymer Chemistry, 2015, 6, 256-269.	3.9	33
72	Dielectric Constant Enhancement of Epoxy Thermosets via Formation of Polyelectrolyte Nanophases. Journal of Physical Chemistry B, 2014, 118, 14703-14712.	2.6	17

#	Article	IF	CITATIONS
73	Poly(methyl methacrylate)- <i>block</i> -poly(<i>N</i> -vinyl pyrrolidone) diblock copolymer: A facile synthesis via sequential radical polymerization mediated by isopropylxanthic disulfide and its nanostructuring polybenzoxazine thermosets. Journal of Polymer Science Part A, 2014, 52, 952-962.	2.3	9
74	Morphology and fracture toughness of nanostructured epoxy thermosets containing macromolecular miktobrushes composed of poly($\hat{l}\mu$ -caprolactone) and polydimethylsiloxane side chains. Journal of Materials Science, 2014, 49, 1256-1266.	3.7	5
75	Formation of nanostructures in thermosets containing block copolymers: From self-assembly to reaction-induced microphase separation mechanism. Polymer, 2014, 55, 1190-1201.	3.8	38
76	Poly(N-isopropylacrylamide)-block-poly(acrylic acid) hydrogels: synthesis and rapid thermoresponsive properties. Colloid and Polymer Science, 2014, 292, 2633-2645.	2.1	16
77	Thermoresponsive gelation behavior of poly(N-isopropylacrylamide)-block-poly(N-isopropylacrylamide) triblock copolymers. European Polymer Journal, 2014, 61, 23-32.	5.4	21
78	Poly($\hat{l}\mu$ -caprolactone)-block-poly(N-vinyl pyrrolidone) diblock copolymers grafted from macrocyclic oligomeric silsesquioxane. Polymer, 2014, 55, 3925-3935.	3.8	6
79	Synthesis and self-assembly behavior of organic–inorganic macrocyclic molecular brushes composed of macrocyclic oligomeric silsesquioxane and poly(N-isopropylacrylamide). RSC Advances, 2014, 4, 28439-28450.	3.6	6
80	Organic–inorganic random copolymers from methacrylate-terminated poly(ethylene oxide) with 3-methacryloxypropylheptaphenyl polyhedral oligomeric silsesquioxane: synthesis via RAFT polymerization and self-assembly behavior. Soft Matter, 2014, 10, 383-394.	2.7	29
81	Organic-inorganic copolymers with double-decker silsesquioxane in the main chains by polymerization via click chemistry. Journal of Polymer Science Part A, 2013, 51, 4221-4232.	2.3	36
82	Organic–inorganic polyurethanes with 3,13-dihydroxypropyloctaphenyl double-decker silsesquioxane chain extender. Polymer Chemistry, 2013, 4, 1491-1501.	3.9	77
83	Poly(glycidyl methacrylate)-block-poly(ΐμ-caprolactone)-block-poly(glycidyl methacrylate) Triblock Copolymer: Synthesis and Use as Mesoporous Silica Porogen. Journal of Macromolecular Science - Pure and Applied Chemistry, 2013, 50, 399-410.	2.2	6
84	Formation of Nanophases in Epoxy Thermosets Containing Amphiphilic Block Copolymers with Linear and Star-like Topologies. Journal of Physical Chemistry B, 2013, 117, 8256-8268.	2.6	20
85	Poly(N-isopropylacrylamide)-block-poly(vinyl pyrrolidone) block copolymer networks: Synthesis and rapid thermoresponse of hydrogels. Polymer, 2013, 54, 1370-1380.	3.8	31
86	Organic–inorganic hybrid diblock copolymer composed of poly (Îμ aprolactone) and poly(MA POSS): Synthesis and its nanocomposites with epoxy resin. Journal of Polymer Science Part A, 2013, 51, 2079-2090.	2.3	25
87	Formation and Confined Crystallization of Polyethylene Nanophases in Epoxy Thermosets. Macromolecules, 2013, 46, 2740-2753.	4.8	51
88	Crosslinked epoxy microspheres: Preparation, surfaceâ€initiated polymerization, and use as macroporous silica porogen. Journal of Applied Polymer Science, 2013, 128, 2829-2839.	2.6	13
89	Miscibility and Hydrogen Bonding Interactions in Blends of Poly(hydroxyether ketone) and Poly(4-vinyl pyridine). Journal of Macromolecular Science - Physics, 2012, 51, 368-382.	1.0	5
90	Formation of nanophases in epoxy thermosets containing an organic–inorganic macrocyclic molecular brush with poly(ε-caprolactone)-block-polystyrene side chains. Soft Matter, 2012, 8, 7062.	2.7	24

#	Article	IF	CITATIONS
91	Incorporation, valence state, and electronic structure of Mn and Cr in bulk single crystal β–Ga2O3. Journal of Applied Physics, 2012, 111, 123716.	2.5	40
92	Surface morphology and dewettability of self-organized thermosets involving epoxy and POSS-capped poly(ethylene oxide) telechelics. Materials Chemistry and Physics, 2012, 136, 744-754.	4.0	21
93	Reaction-Induced Microphase Separation in Epoxy Thermosets Containing Block Copolymers Composed of Polystyrene and Poly(ε-caprolactone): Influence of Copolymer Architectures on Formation of Nanophases. Macromolecules, 2012, 45, 9155-9168.	4.8	75
94	From poly(<i>N</i> â€isopropylacrylamide)â€ <i>block</i> â€poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 0 poly(<i>N</i> â€isopropylacrylamide)â€ <i>block</i> â€poly(ethylene oxide) hydrogels: Synthesis and rapid deswelling and reswelling behavior of hydrogels. Journal of Polymer Science Part A, 2012, 50, 1717-1727.	632 Td (ox 2.3	kide)â€∢i>bl 18
95	Synthesis and characterization of organic–inorganic macrocyclic molecular brushes with poly(ε-caprolactone) side chains. European Polymer Journal, 2012, 48, 730-742.	5.4	11
96	Synthesis and characterization of heptaphenyl polyhedral oligomeric silsesquioxane-capped poly(N-isopropylacrylamide)s. European Polymer Journal, 2012, 48, 945-955.	5.4	25
97	Poly(ethylene oxide)-grafted poly(N-isopropylacrylamide) networks: Preparation, characterization and rapid deswelling and reswelling behavior of hydrogels. Reactive and Functional Polymers, 2012, 72, 176-184.	4.1	16
98	Synthesis and Selfâ€Assembly Behavior of Organic–Inorganic Poly(ethylene oxide)â€∢i>blockà6€Poly(MA) Tj and Physics, 2012, 213, 458-469.	ETQq0 0 2.2	0 rgBT /Ovei 43
99	Organic-inorganic poly(hydroxyether of bisphenol A) copolymers with double-decker silsesquioxane in the main chains. Journal of Materials Chemistry, 2011, 21, 19344.	6.7	65
100	Poly(acrylic acid)-grafted Poly(N-isopropyl acrylamide) Networks: Preparation, Characterization and Hydrogel Behavior. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 2305-2324.	3.5	24
101	Hepta(3,3,3-trifluoropropyl) Polyhedral Oligomeric Silsesquioxane-capped Poly(<i>N</i> -isopropylacrylamide) Telechelics: Synthesis and Behavior of Physical Hydrogels. ACS Applied Materials & Damp; Interfaces, 2011, 3, 898-909.	8.0	66
102	Morphology and Properties of Polybenzoxazine Blends. , 2011, , 445-455.		1
103	Morphological Transition from Spherical to Lamellar Nanophases in Epoxy Thermosets Containing Poly(ethylene oxide)- <i>block</i> -caprolactone)- <i>block</i> -caprolactone)- <i>block</i> -caprolactone)- <i>block</i> -caprolactone)- <i>-caprolactone)-<i>-caprolactone)-<i>-caprolactone)-<i>-caprolactone)-<i>-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-< -=""> All All All All All All All All All All</i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<i-caprolactone)-<></i></i></i></i></i>	4.8	52
104	Nanostructured thermosets from epoxy and poly(2,2,2-trifluoroethyl acrylate)-block-poly(glycidyl) Tj ETQq0 0 0 rg Polymer, 2011, 52, 5669-5680.	gBT /Overl 3.8	ock 10 Tf 50 54
105	Nanostructures and surface hydrophobicity of epoxy thermosets containing hepta(3,3,3-trifluropropyl) polyhedral oligomeric silsesquioxane-capped poly(hydroxyether of) Tj ETQq1 1 0.7843	14) reg BT/C	Ov e 7lock 10
106	Microphase separation in polybenzoxazine thermosets containing benzoxazine-terminated poly(ethylene oxide) telechelics. European Polymer Journal, 2011, 47, 1550-1562.	5.4	8
107	Morphology and thermomechanical properties of epoxy thermosets modified with polysulfoneâ€ <i>block</i> â€polydimethylsiloxane multiblock copolymer. Journal of Applied Polymer Science, 2011, 119, 2933-2944.	2.6	13
108	Poly(N-vinylpyrrolidone)-grafted poly(N-isopropylacrylamide) copolymers: Synthesis, characterization and rapid deswelling and reswelling behavior of hydrogels. Polymer, 2011, 52, 2340-2350.	3.8	28

#	Article	IF	CITATIONS
109	Morphology and thermomechanical properties of main-chain polybenzoxazine-block-polydimethylsiloxane multiblock copolymers. Polymer, 2010, 51, 1124-1132.	3.8	47
110	Self-organized thermosets involving epoxy and poly(É>-caprolactone)-block-poly(É>-caprolactone) amphiphilic triblock copolymer. Polymer, 2010, 51, 6047-6057.	3.8	33
111	Reaction-induced microphase separation in polybenzoxazine thermosets containing poly(N-vinyl) Tj ETQq1 1 0.78	4314 rgB1	Г <u>l</u> Qverlock 26
112	Nanostructured polybenzoxazine thermosets via reactionâ€induced microphase separation. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 1148-1159.	2.1	16
113	Morphology and Fracture Toughness of Nanostructured Epoxy Resin Containing Amino-Terminated Poly(propylene oxide). Journal of Macromolecular Science - Physics, 2010, 49, 574-591.	1.0	8
114	Double Reaction-induced Microphase Separation in Epoxy Resin Containing Polystyrene- <i>block</i> -poly(ε-caprolactone)- <i>block</i> -poly(<i>n</i> -butyl acrylate) ABC Triblock Copolymer. Macromolecules, 2010, 43, 10600-10611.	4.8	62
115	From Self-Organized Novolac Resins to Ordered Nanoporous Carbons. Macromolecules, 2010, 43, 2960-2969.	4.8	53
116	Surface morphology and electronic structure of bulk single crystal \hat{l}^2 -Ga2O3(100). Applied Physics Letters, 2009, 94, .	3.3	56
117	Synthesis and Characterization of Organic/Inorganic Polyrotaxanes from Polyhedral Oligomeric Silsesquioxane and Poly(ethylene oxide)/ <i>îl±</i> îe€yclodextrin Polypseudorotaxanes via Click Chemistry. Macromolecular Chemistry and Physics, 2009, 210, 783-791.	2.2	30
118	Poly(hydroxyether of bisphenol A) <i>â€alt</i> â€polydimethylsiloxane: a novel thermally crosslinkable alternating block copolymer. Polymer International, 2009, 58, 124-132.	3.1	23
119	Organic–inorganic hybrid brushes consisting of macrocyclic oligomeric silsesquioxane and poly(εâ€caprolactone): Synthesis, characterization, and supramolecular inclusion complexation with αâ€cyclodextrin. Journal of Polymer Science Part A, 2009, 47, 6894-6907.	2.3	13
120	Organic–inorganic hybrid hydrogels involving poly(<i>N</i> â€isopropylacrylamide) and polyhedral oligomeric silsesquioxane: Preparation and rapid thermoresponsive properties. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 504-516.	2.1	44
121	Self-assembly behavior of hepta(3,3,3-trifluoropropyl) polyhedral oligomeric silsesquioxane-capped poly(É>-caprolactone) in epoxy resin: Nanostructures and surface properties. Polymer, 2009, 50, 685-695.	3.8	55
122	Effect of hydrophobic polystyrene microphases on temperature-responsive behavior of poly(N-isopropylacrylamide) hydrogels. Polymer, 2009, 50, 670-678.	3.8	23
123	Morphology and mechanical properties of nanostructured blends of epoxy resin with poly(É>-caprolactone)-block-poly(butadiene-co-acrylonitrile)-block-poly(É>-caprolactone) triblock copolymer. Polymer, 2009, 50, 4089-4100.	3.8	69
124	Reaction-induced microphase separation in epoxy resin containing polystyrene-block-poly(ethylene) Tj ETQq0 0 0	rgBT /Ove	rlggk 10 Tf :
125	Nanostructures in Thermosetting Blends of Epoxy Resin with Polydimethylsiloxane- <i>block</i> -poly(ε-caprolactone)- <i>block</i> -polystyrene ABC Triblock Copolymer. Macromolecules, 2009, 42, 327-336.	4.8	99
126	Rapid Deswelling and Reswelling Response of Poly(<i>N</i> -isopropylacrylamide) Hydrogels via Formation of Interpenetrating Polymer Networks with Polyhedral Oligomeric Silsesquioxane-Capped Poly(ethylene oxide) Amphiphilic Telechelics. Journal of Physical Chemistry B, 2009, 113, 11831-11840.	2.6	77

#	Article	IF	CITATIONS
127	Nanostructures and Surface Hydrophobicity of Self-Assembled Thermosets Involving Epoxy Resin and Poly(2,2,2-trifluoroethyl acrylate)-block-Poly(ethylene oxide) Amphiphilic Diblock Copolymer. Journal of Physical Chemistry B, 2009, 113, 1857-1868.	2.6	54
128	Poly(hydroxyether of bisphenol A)-block-polydimethylsiloxane alternating block copolymer and its nanostructured blends with epoxy resin. Polymer, 2008, 49, 3318-3326.	3.8	90
129	Poly(ethylene imine)â€∢i>graftàâ€poly(ethylene oxide) brushâ€like copolymers: Preparation, thermal properties, and selective supramolecular inclusion complexation with αâ€cyclodextrin. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 2296-2306.	2.1	17
130	Reaction-induced microphase separation in thermosetting blends of epoxy resin with poly(methyl) Tj ETQq0 0 0 morphological structures. Polymer, 2008, 49, 3157-3167.	O rgBT /Ove 3.8	erlock 10 Tf 50 82
131	Poly(ethylene imine) hybrids containing polyhedral oligomeric silsesquioxanes: Preparation, structure and properties. European Polymer Journal, 2008, 44, 3946-3956.	5. 4	36
132	Highly Porous Polysilsesquioxane Networks via Hydrosilylative Polymerization of Macrocyclic Oligomeric Silsesquioxanes. Macromolecules, 2008, 41, 4561-4564.	4.8	24
133	Microphase Separation in Thermosetting Blends of Epoxy Resin and Poly(ε-caprolactone)- <i>block</i> -Polystyrene Block Copolymers. Macromolecules, 2008, 41, 1411-1420.	4.8	104
134	Hydrogen Bonding Interactions in Miscible Blends of Poly(hydroxyether ester)s with Poly(Nâ€vinyl) Tj ETQq0 0	0 rgBT/Ov	erlogk 10 Tf 5
135	Nanostructured Thermosetting Blends of Phenolic Thermosets and Poly(ethylene) Tj ETQq1 1 0.784314 rgBT / of Macromolecular Science - Physics, 2008, 47, 450-462.	Overlock 10) Tf 50 427 To 12
136	Reaction-Induced Microphase Separation in Epoxy Thermosets Containing Poly(ε-caprolactone)-block-poly(n-butyl acrylate) Diblock Copolymer. Macromolecules, 2007, 40, 2548-2558.	4.8	127
137	Nanostructures and Surface Dewettability of Epoxy Thermosets Containing Hepta(3,3,3-trifluoropropyl) Polyhedral Oligomeric Silsesquioxane-Capped Poly(ethylene Oxide). Journal of Physical Chemistry B, 2007, 111, 13919-13928.	2.6	74
138	Nanostructured Thermosets from Epoxy Resin and an Organicâ^'Inorganic Amphiphile. Macromolecules, 2007, 40, 7009-7018.	4.8	74
139	Synthesis and characterization of dendritic star-shaped poly(ε-caprolactone)-block-poly(L-lactide) block copolymers. Journal of Applied Polymer Science, 2007, 106, 417-424.	2.6	17
140	Inorganic–organic interpenetrating polymer networks involving polyhedral oligomeric silsesquioxane and poly(ethylene oxide). Polymer, 2007, 48, 1176-1184.	3.8	59
141	Morphology and thermomechanical properties of nanostructured thermosetting blends of epoxy resin and poly(É>-caprolactone)-block-polydimethylsiloxane-block-poly(É>-caprolactone) triblock copolymer. Polymer, 2007, 48, 6134-6144.	3.8	76
142	Poly(N-isopropylacrylamide) nanocrosslinked by polyhedral oligomeric silsesquioxane: Temperature-responsive behavior of hydrogels. Journal of Colloid and Interface Science, 2007, 307, 377-385.	9.4	88
143	Supramolecular inclusion complexation of polyhedral oligomeric silsesquioxane capped poly(É>-caprolactone) with α-cyclodextrin. Journal of Polymer Science Part A, 2007, 45, 1247-1259.	2.3	46
144	Melting and crystallization behavior of polyhedral oligomeric silsesquioxane apped poly(ε aprolactone). Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 2201-2214.	2.1	26

#	Article	IF	CITATIONS
145	Miscibility and crystallization behavior in blends of poly(methyl methacrylate) and poly(vinylidene) Tj ETQq1 1 0.78 Part B: Polymer Physics, 2007, 45, 2580-2593.		T /Overlock 15
146	Synthesis and characterization of poly (hydroxyether ketone) and its copolymers. Polymer International, 2007, 56, 935-942.	3.1	2
147	Synthesis and Characterization of Dendritic Star Poly(L-Lactide)s. Polymer Bulletin, 2007, 58, 767-775.	3.3	38
148	Organic–inorganic hybrid nanocomposites involving novolac resin and polyhedral oligomeric silsesquioxane. Reactive and Functional Polymers, 2007, 67, 627-635.	4.1	41
149	One-Pot Synthesis of Poly(cyclotriphosphazene-co-4,4′-sulfonyldiphenol) Nanotubes via an In Situ Template Approach. Advanced Materials, 2006, 18, 2997-3000.	21.0	167
150	Formation of Ordered Nanostructures in Epoxy Thermosets:Â A Mechanism of Reaction-Induced Microphase Separation. Macromolecules, 2006, 39, 5072-5080.	4.8	177
151	Nanostructured Thermosetting Blends of Epoxy Resin and Amphiphilic Poly(ε-caprolactone)-block-polybutadiene-block-poly(ε-caprolactone) Triblock Copolymer. Macromolecules, 2006, 39, 711-719.	4.8	198
152	Phase behavior, crystallization, and nanostructures in thermoset blends of epoxy resin and amphiphilic star-shaped block copolymers. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 975-985.	2.1	40
153	Comparative studies on miscibility and phase behavior of linear and star poly(2-methyl-2-oxazoline) blends with poly(vinylidene fluoride). Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 942-952.	2.1	17
154	Competitive specific interactions in miscible blends of poly(hydroxyether terephthalate ester) and poly(4-vinyl pyridine). Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 1618-1626.	2.1	6
155	Epoxy resin containing polyphenylsilsesquioxane: Preparation, morphology, and thermomechanical properties. Journal of Polymer Science Part A, 2006, 44, 1093-1105.	2.3	17
156	Inorganic-organic nanocomposites of polybenzoxazine with octa(propylglycidyl ether) polyhedral oligomeric silsesquioxane. Journal of Polymer Science Part A, 2006, 44, 1168-1181.	2.3	109
157	Star-shaped poly(É>-caprolactone) with polyhedral oligomeric silsesquioxane core. Polymer, 2006, 47, 6814-6825.	3.8	110
158	Epoxy resin containing poly(ethylene oxide)-block-poly(É>-caprolactone) diblock copolymer: Effect of curing agents on nanostructures. Polymer, 2006, 47, 7590-7600.	3.8	82
159	Polybenzoxazine containing polysilsesquioxane: Preparation and thermal properties. Journal of Applied Polymer Science, 2006, 99, 927-936.	2.6	52
160	Polyurethane Networks Modified with Octa(propylglycidyl ether) Polyhedral Oligomeric Silsesquioxane. Macromolecular Chemistry and Physics, 2006, 207, 1842-1851.	2.2	79
161	Back Cover: Macromol. Chem. Phys. 20/2006. Macromolecular Chemistry and Physics, 2006, 207, 1908-1908.	2.2	O
162	Montmorillonite intercalated by ammonium of octaaminopropyl polyhedral oligomeric silsesquioxane and its nanocomposites with epoxy resin. Polymer, 2005, 46, 157-165.	3.8	130

#	Article	IF	Citations
163	Influence of intramolecular specific interactions on phase behavior of epoxy resin and poly ($\hat{l}\mu$ -caprolactone) blends cured with aromatic amines. Polymer, 2005, 46, 5828-5839.	3.8	73
164	Epoxy nanocomposites with octa(propylglycidyl ether) polyhedral oligomeric silsesquioxane. Polymer, 2005, 46, 12016-12025.	3.8	138
165	Morphology and Thermomechanical Properties of Organicâ^'Inorganic Hybrid Composites Involving Epoxy Resin and an Incompletely Condensed Polyhedral Oligomeric Silsesquioxane. Macromolecules, 2005, 38, 5088-5097.	4.8	224
166	Ternary Thermosetting Blends of Epoxy Resin, Poly(ethylene oxide) and Poly(É>-caprolactone). Macromolecular Chemistry and Physics, 2005, 206, 929-937.	2.2	54
167	Epoxy Resin Containing Octamaleimidophenyl Polyhedral Oligomeric Silsesquioxane. Macromolecular Chemistry and Physics, 2005, 206, 2075-2083.	2.2	45
168	Polyurethane Networks Nanoreinforced by Polyhedral Oligomeric Silsesquioxane. Macromolecular Rapid Communications, 2005, 26, 196-200.	3.9	221
169	Poly(4-vinylpyridine) Nanocrosslinked by Polyhedral Oligomeric Silsesquioxane. Macromolecular Rapid Communications, 2005, 26, 920-925.	3.9	26
170	Poly(hydroxyether terephthalate ester): Synthesis, characterization and competitive specific interactions in mixtures with poly(ethylene oxide). Polymer, 2005, 46, 10574-10584.	3.8	7
171	Epoxy resin cured with poly(4-vinyl pyridine). Journal of Materials Science, 2005, 40, 6367-6373.	3.7	18
172	Miscibility and intermolecular specific interactions in thermosetting blends of bisphenol S epoxy resin with poly(ethylene oxide). Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 359-367.	2.1	14
173	Inorganic-organic hybrids involving poly(É)-caprolactone) and silica network: Hydrogen-bonding interactions and isothermal crystallization kinetics. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 2594-2603.	2.1	39
174	Non-isothermal crystallization kinetics of poly(?-caprolactone) in hydrogen-bond-coupled polymeric-inorganic hybrid materials. Polymer International, 2005, 54, 327-335.	3.1	10
175	Different deswelling behavior of temperature-sensitive microgels ofÂpoly(N-isopropylacrylamide) crosslinked by polyethyleneglycol dimethacrylates. Journal of Colloid and Interface Science, 2004, 276, 53-59.	9.4	26
176	Morphology and thermal properties of inorganic–organic hybrids involving epoxy resin and polyhedral oligomeric silsesquioxanes. Polymer, 2004, 45, 5557-5568.	3.8	283
177	Effect of crosslinking on intermolecular interactions in thermosetting blends of epoxy resin with poly(ethylene oxide). Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 2567-2575.	2.1	23
178	Miscibility and Intermolecular Specific Interactions in Blends of Poly(hydroxyether sulfone) and Poly(N-vinylpyrrolidone). Macromolecular Chemistry and Physics, 2004, 205, 834-842.	2,2	15
179	Thermosetting Blends of Polybenzoxazine and Poly(ε-caprolactone): Phase Behavior and Intermolecular Specific Interactions. Macromolecular Chemistry and Physics, 2004, 205, 1547-1558.	2.2	66
180	Miscibility and phase separation in blends of phenolphthalein poly(aryl ether ketone) and poly(ethylene oxide): a differential scanning calorimetric study. Thermochimica Acta, 2004, 419, 267-274.	2.7	7

#	Article	IF	CITATIONS
181	Poly(hydroxyether sulfone) and its blends with poly(ethylene oxide): miscibility, phase behavior and hydrogen bonding interactions. Polymer, 2004, 45, 2897-2909.	3.8	20
182	A Novel Photocrosslinkable Polyhedral Oligomeric Silsesquioxane and Its Nanocomposites with Poly(vinyl cinnamate). Chemistry of Materials, 2004, 16, 5141-5148.	6.7	99
183	Epoxy resin/poly(ethylene oxide) (PEO) and poly(?-caprolactone) (PCL) blends cured with 1,3,5-trihydroxybenzene: miscibility and intermolecular interactions. Colloid and Polymer Science, 2003, 281, 1015-1024.	2.1	27
184	Epoxy resin containing the poly(sily ether): Preparation, morphology, and mechanical properties. Journal of Applied Polymer Science, 2003, 89, 505-512.	2.6	4
185	Miscibility and intermolecular specific interactions in blends of poly(hydroxyether of bisphenol A) and poly(4-vinyl pyridine). Polymer, 2003, 44, 1067-1074.	3.8	35
186	Miscibility and phase behavior in thermosetting blends of polybenzoxazine and poly(ethylene oxide). Polymer, 2003, 44, 4689-4698.	3.8	58
187	Poly(hydroxyether of phenolphthalein) and its blends with poly(ethylene oxide). Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 466-475.	2.1	16
188	Epoxy resin/poly($\hat{l}\mu$ -caprolactone) blends cured with 2,2-bis[4-(4-aminophenoxy)phenyl]propane. I. Miscibility and crystallization kinetics. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 1085-1098.	2.1	46
189	Epoxy resin/poly(Îμ-caprolactone) blends cured with 2,2-bis[4-(4-aminophenoxy)phenyl]propane. II. Studies by Fourier transform infrared and carbon-13 cross-polarization/magic-angle spinning nuclear magnetic resonance spectroscopy. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 1099-1111.	2.1	25
190	Miscibility and phase behavior in blends of phenolphthalein poly(ether sulfone) and poly(hydroxyether of bisphenol A). Polymer, 2003, 44, 867-876.	3.8	32
191	Miscibility In Blends Of Poly(methyl Methacrylate) And Poly(silyl Ether) As Investigated By Dsc And13C Cp/mas Nmr Spectroscopy. Journal of Macromolecular Science - Physics, 2003, 42, 351-365.	1.0	4
192	Miscibility and mechanical properties of tetrafunctional epoxy resin/phenolphthalein poly(ether ether) Tj ETQq0 0	0_rgBT /Ov 2.6	verlock 10 T
193	Self-decelerated crystallization in blends of polyhydroxyether of bisphenol A and poly(ethylene) Tj ETQq1 1 0.7843	314 rgBT / 2.1	Overlock 10 24
194	Title is missing!. Journal of Materials Science, 2000, 35, 5613-5619.	3.7	30
195	Miscibility and interchange reactions in blends of bisphenol-A-type epoxy resin and poly(ethylene) Tj ETQq1 1 0.78	34314 rgB	T∤Qverloc <mark>k</mark>
196	Blends of poly(hydroxyether of bisphenol A) and polycarbonate:in situpolymerization preparation, miscibility, and transreaction. Journal of Applied Polymer Science, 1999, 73, 1181-1190.	2.6	9
197	Characterization of blends of poly(vinyl chloride) and poly(N-vinyl pyrrolidone) by FTIR and 13C CP/MAS NMR spectroscopy. Journal of Polymer Science, Part B: Polymer Physics, 1999, 37, 2412-2419.	2.1	24
198	A polymer of bisphenol A and bisphenol A diglycidyl ether and its blends with poly(styrene-co-acrylonitrile):In situ polymerization preparation, morphology, and mechanical properties. Journal of Polymer Science Part A, 1999, 37, 525-532.	2.3	12

#	Article	IF	CITATIONS
199	Poly(hydroxyether of bisphenol A)/poly(vinyl acetate) blends:In situ polymerization preparation, morphology, and properties. Journal of Polymer Science Part A, 1999, 37, 2329-2337.	2.3	14
200	Examination of miscibility at molecular level of poly(hydroxyether of bisphenol A)/poly(N-vinyl) Tj ETQq0 0 0 rgBT spectroscopy. Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 2291-2300.	Overlock 2.1	10 Tf 50 707 36
201	Phase behavior and properties of poly(methyl methacrylate)/poly(vinyl acetate) blends prepared viain situ polymerization. Journal of Applied Polymer Science, 1998, 69, 675-684.	2.6	17
202	Miscibility, phase behavior, and mechanical properties of ternary blends of poly(vinyl) Tj ETQq0 0 0 rgBT /Overlock 1998, 69, 995-1003.	10 Tf 50 (2.6	627 Td (chlo 22
203	Blends of phenolphthalein poly(ether ether ketone) and a thermotropic liquid crystalline copolyester. Journal of Applied Polymer Science, 1998, 69, 1923-1931.	2.6	11
204	Phase behaviour and mechanical properties of epoxy resin containing phenolphthalein poly(ether) Tj ETQq0 0 0 rg	BJ Overlo	ock 10 Tf 50
205	Miscibility, Intermolecular Interactions, and Thermal Behavior of Poly(hydroxy ether of Bisphenol) Tj ETQq $1\ 1\ 0.78$	4314 rgBT 4.8	lOverlock 1
206	Blends of poly(vinyl chloride) with acrylonitrile-chlorinated polyethylene-styrene copolymer. I. Miscibility, phase behavior, and thermal properties. Journal of Macromolecular Science - Physics, 1997, 36, 441-454.	1.0	7
207	Title is missing!. Journal of Materials Science, 1997, 32, 3463-3468.	3.7	10
208	Miscibility and mechanical properties of epoxy resin/polysulfone blends. Polymer, 1997, 38, 5565-5571.	3.8	113
209	A DSC study of miscibility and phase separation in crystalline polymer blends of phenolphthalein poly (ether ether sulfone) and poly(ethylene oxide). Journal of Polymer Science, Part B: Polymer Physics, 1997, 35, 1383-1392.	2.1	39
210	Poly(N-phenyl-2-hydroxytrimethylene amine): Its blends with poly(?-caprolactone) and water-soluble polyethers. Journal of Polymer Science Part A, 1997, 35, 211-218.	2.3	6
211	Thermosetting polymer blends of unsaturated polyester resin and poly(ethylene oxide). I. Miscibility and thermal properties. Journal of Polymer Science Part A, 1997, 35, 3161-3168.	2.3	41
212	Thermosetting polymer blends of unsaturated polyester resin and poly(ethylene oxide). II. Hydrogen-bonding interaction, crystallization kinetics, and morphology. Journal of Polymer Science Part A, 1997, 35, 3169-3179.	2.3	44
213	Blends of poly(vinyl chloride) with acrylonitrile-chlorinated polyethylene-styrene copolymer. II. Mechanical properties. Journal of Applied Polymer Science, 1997, 64, 399-405.	2.6	6
214	Blends of poly(hydroxyether of bisphenol A) (Phenoxy) and poly(ε-caprolactone) (PCL): Effect of acetylation degree of hydroxyls in phenoxy on miscibility. European Polymer Journal, 1997, 33, 937-942.	5.4	7
215	Miscibility, morphology and fracture toughness of epoxy resin/poly(vinyl acetate) blends. Colloid and Polymer Science, 1996, 274, 410-417.	2.1	38
216	Miscibility, morphology and fracture toughness of epoxy resin/poly(styrene-co-acrylonitrile) blends. Polymer, 1996, 37, 4667-4673.	3.8	88

SIXUN ZHENG

#	Article	lF	CITATION
217	Morphology and structure of organosilicon polymer-modified epoxy resins. Macromolecular Chemistry and Physics, 1995, 196, 269-278.	2.2	41
218	Miscibility of epoxy resins/poly(ethylene oxide) blends cured with phthalic anhydride. Polymer, 1994, 35, 2619-2623.	3.8	84
219	Toughening of epoxy by nanostructures with ABA triblock copolymers: An influence of organosilicon modification of block copolymer. Polymer Engineering and Science, 0, , .	3.1	5
220	Polyurethanes Reinforced with Polyethylene Nanocrystals: Synthesis, Triple Shape Memory, and Reprocessing Properties. Macromolecules, 0, , .	4.8	4