Alma Balestrazzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8140189/publications.pdf

Version: 2024-02-01

47 papers 1,835

20 h-index 276875 41 g-index

47 all docs

47 docs citations

47 times ranked

1868 citing authors

#	Article	IF	CITATIONS
1	Seed priming: state of the art and new perspectives. Plant Cell Reports, 2015, 34, 1281-1293.	5.6	536
2	Understanding the molecular pathways associated with seed vigor. Plant Physiology and Biochemistry, 2012, 60, 196-206.	5.8	142
3	Seed imbibition in Medicago truncatula Gaertn.: Expression profiles of DNA repair genes in relation to PEG-mediated stress. Journal of Plant Physiology, 2011, 168, 706-713.	3.5	90
4	Genotoxic stress and DNA repair in plants: emerging functions and tools for improving crop productivity. Plant Cell Reports, 2011 , 30 , $287-295$.	5 . 6	83
5	The tyrosyl-DNA phosphodiesterase gene family in Medicago truncatula Gaertn.: bioinformatic investigation and expression profiles in response to copper- and PEG-mediated stress. Planta, 2010, 232, 393-407.	3.2	82
6	Seed enhancement: getting seeds restorationâ€ready. Restoration Ecology, 2020, 28, S266.	2.9	79
7	New insights on the barrel medic MtOGG1 and MtFPG functions in relation to oxidative stress response in planta and during seed imbibition. Plant Physiology and Biochemistry, 2011, 49, 1040-1050.	5.8	69
8	DNA profiling, telomere analysis and antioxidant properties as tools for monitoring ex situ seed longevity. Annals of Botany, 2013, 111, 987-998.	2.9	55
9	Synergistic Exposure of Rice Seeds to Different Doses of Ammi:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"> <mml:mrow><mml:mi mathvariant="bold-italic">13</mml:mi></mml:mrow> -Ray and Salinity Stress Resulted in Increased Antioxidant Enzyme Activities and Gene-Specific Modulation of TC-NER Pathway. BioMed	1.9	55
10	Single Cell Gel Electrophoresis (Comet) assay with plants: Research on DNA repair and ecogenotoxicity testing. Chemosphere, 2013, 92, 1-9.	8.2	50
11	Systems biology and genome-wide approaches to unveil the molecular players involved in the pre-germinative metabolism: implications on seed technology traits. Plant Cell Reports, 2017, 36, 669-688.	5.6	45
12	The Seed Repair Response during Germination: Disclosing Correlations between DNA Repair, Antioxidant Response, and Chromatin Remodeling in Medicago truncatula. Frontiers in Plant Science, 2017, 8, 1972.	3.6	40
13	Copper-mediated genotoxic stress is attenuated by the overexpression of the DNA repair gene MtTdp2α (tyrosyl-DNA phosphodiesterase 2) in Medicago truncatula plants. Plant Cell Reports, 2014, 33, 1071-1080.	5.6	38
14	Gamma irradiation with different dose rates induces different DNA damage responses in Petunia x hybrida cells. Journal of Plant Physiology, 2013, 170, 780-787.	3. 5	36
15	Metabolic and gene expression hallmarks of seed germination uncovered by sodium butyrate in <scp><i>Medicago truncatula</i></scp> . Plant, Cell and Environment, 2019, 42, 259-269.	5.7	36
16	The TFIIS and TFIIS-like genes from Medicago truncatula are involved in oxidative stress response. Gene, 2011, 470, 20-30.	2.2	34
17	RNA-Seq analysis discloses early senescence and nucleolar dysfunction triggered by Tdp1α depletion in Medicago truncatula. Journal of Experimental Botany, 2013, 64, 1941-1951.	4.8	32
18	Integrating plant and animal biology for the search of novel DNA damage biomarkers. Mutation Research - Reviews in Mutation Research, 2018, 775, 21-38.	5 . 5	30

#	Article	IF	CITATIONS
19	Redox Balance-DDR-miRNA Triangle: Relevance in Genome Stability and Stress Responses in Plants. Frontiers in Plant Science, 2019, 10, 989.	3.6	27
20	Cell death induction and nitric oxide biosynthesis in white poplar (<i>Populus alba</i>) suspension cultures exposed to alfalfa saponins. Physiologia Plantarum, 2011, 141, 227-238.	5.2	26
21	How Does the Seed Pre-Germinative Metabolism Fight Against Imbibition Damage? Emerging Roles of Fatty Acid Cohort and Antioxidant Defence. Frontiers in Plant Science, 2019, 10, 1505.	3.6	20
22	Plant hormone signaling and modulation of DNA repair under stressful conditions. Plant Cell Reports, 2013, 32, 1043-1052.	5.6	18
23	Prolonged Cold Storage Affects Pollen Viability and Germination along with Hydrogen Peroxide and Nitric Oxide Content in <i>Rosa hybrida</i> . Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2016, 44, 6-10.	1.1	18
24	Maintaining Genome Integrity during Seed Development in Phaseolus vulgaris L.: Evidence from a Transcriptomic Profiling Study. Genes, 2018, 9, 463.	2.4	16
25	Metabolic signatures of germination triggered by kinetin in Medicago truncatula. Scientific Reports, 2019, 9, 10466.	3.3	16
26	Unraveling the response of plant cells to cytotoxic saponins. Plant Signaling and Behavior, 2011, 6, 516-519.	2.4	14
27	Pollen Grain Preservation and Fertility in Valuable Commercial Rose Cultivars. Plants, 2017, 6, 17.	3.5	13
28	Dose-Dependent Reactive Species Accumulation and Preferential Double-Strand Breaks Repair are Featured in the Î ³ -ray Response in Medicago truncatula Cells. Plant Molecular Biology Reporter, 2014, 32, 129-141.	1.8	12
29	Changes in genotoxic stress response, ribogenesis and PAP (3â€2â€phosphoadenosine 5â€2â€phosphate) levels a associated with loss of desiccation tolerance in overprimed <i>Medicago truncatula</i> seeds. Plant, Cell and Environment, 2022, 45, 1457-1473.	are 5.7	11
30	Cell wall integrity, genotoxic injury and PCD dynamics in alfalfa saponin-treated white poplar cells highlight a complex link between molecule structure and activity. Phytochemistry, 2015, 111, 114-123.	2.9	10
31	A Snapshot of the Trehalose Pathway During Seed Imbibition in Medicago truncatula Reveals Temporaland Stress-Dependent Shifts in Gene Expression Patterns Associated With Metabolite Changes. Frontiers in Plant Science, 2019, 10, 1590.	3.6	10
32	Overexpression of PDH45 or SUV3 helicases in rice leads to delayed leaf senescence-associated events. Protoplasma, 2017, 254, 1103-1113.	2.1	8
33	<i>In Silico</i> Phylogenetic and Structural Analyses of Plant Endogenous Danger Signaling Molecules upon Stress. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-14.	4.0	8
34	White Poplar (Populus alba L.) Suspension Cultures as a Model System to Study Apoptosis Induced by Alfalfa Saponins. Anti-Cancer Agents in Medicinal Chemistry, 2014, 14, 1324-1331.	1.7	8
35	Physiological and molecular aspects of seed longevity: exploring intraâ€species variation in eight <i>Pisum sativum</i> L. accessions. Physiologia Plantarum, 2022, 174, e13698.	5.2	8
36	Genotoxic effects due to in vitro culture and H2O2 treatments in PetuniaÂ×Âhybrida cells monitored through DNA diffusion assay, FPG-SCGE and gene expression profile analyses. Acta Physiologiae Plantarum, 2014, 36, 331-341.	2.1	7

3

#	Article	IF	CITATIONS
37	Depletion of tyrosylâ€DNA phosphodiesterase 1α (<i>MtTdp1α</i>) affects transposon expression in <i>Medicago truncatula</i> . Journal of Integrative Plant Biology, 2016, 58, 618-622.	8.5	7
38	The Tyrosyl-DNA Phosphodiesterase $1\hat{l}^2$ (Tdp $1\hat{l}^2$) Gene Discloses an Early Response to Abiotic Stresses. Genes, 2017, 8, 305.	2.4	7
39	Ultrastructural and Molecular Analyses Reveal Enhanced Nucleolar Activity in Medicago truncatula Cells Overexpressing the MtTdp2l± Gene. Frontiers in Plant Science, 2018, 9, 596.	3.6	7
40	Transgene stability and agronomical performance of two transgenic Basta \hat{A}^{\otimes} -tolerant lines of <i> Populus alba < /i> L. Plant Biosystems, 2012, 146, 33-40.</i>	1.6	6
41	The Human Tyrosyl-DNA Phosphodiesterase 1 (hTdp1) Inhibitor NSC120686 as an Exploratory Tool to Investigate Plant Tdp1 Genes. Genes, 2018, 9, 186.	2.4	6
42	Backbone-free transformation of barrel medic (Medicago truncatula) with a Medicago-derived transfer DNA. Plant Cell Reports, 2010, 29, 1013-1021.	5.6	4
43	Editorial: Maintenance of Genome Integrity: DNA Damage Sensing, Signaling, Repair, and Replication in Plants. Frontiers in Plant Science, 2016, 7, 64.	3.6	4
44	DNA Diffusion Assay Applied to Plant Cells. Methods in Molecular Biology, 2018, 1743, 107-115.	0.9	4
45	Identification and Characterization of SOG1 (Suppressor of Gamma Response 1) Homologues in Plants Using Data Mining Resources and Gene Expression Profiling. Genes, 2022, 13, 667.	2.4	4
46	Impact of \hat{I}^3 -rays on seed germination/short-term storage in four native alpine species: Correlation with free radical and antioxidant profiles. Radiation Physics and Chemistry, 2017, 131, 86-94.	2.8	3
47	Exploring the molecular and chemical–physical aspects of low-dose irradiation using radio-tolerant plant cells. Radiation Protection Dosimetry, 2015, 166, 174-177.	0.8	1