Christoph Kueffer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/813887/publications.pdf

Version: 2024-02-01

112 papers 8,632 citations

50276 46 h-index 87 g-index

118 all docs

 $\frac{118}{\text{docs citations}}$

118 times ranked

9866 citing authors

#	Article	IF	CITATIONS
1	Climatic Niche Shifts Are Rare Among Terrestrial Plant Invaders. Science, 2012, 335, 1344-1348.	12.6	689
2	Unifying niche shift studies: insights from biological invasions. Trends in Ecology and Evolution, 2014, 29, 260-269.	8.7	536
3	Managing the whole landscape: historical, hybrid, and novel ecosystems. Frontiers in Ecology and the Environment, 2014, 12, 557-564.	4.0	378
4	Ain't no mountain high enough: plant invasions reaching new elevations. Frontiers in Ecology and the Environment, 2009, 7, 479-486.	4.0	346
5	Conservation of oceanic island floras: Present and future global challenges. Perspectives in Plant Ecology, Evolution and Systematics, 2010, 12, 107-129.	2.7	288
6	Lags in the response of mountain plant communities to climate change. Global Change Biology, 2018, 24, 563-579.	9.5	279
7	Assembly of nonnative floras along elevational gradients explained by directional ecological filtering. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 656-661.	7.1	257
8	The changing role of ornamental horticulture in alien plant invasions. Biological Reviews, 2018, 93, 1421-1437.	10.4	251
9	A global comparison of plant invasions on oceanic islands. Perspectives in Plant Ecology, Evolution and Systematics, 2010, 12, 145-161.	2.7	250
10	Socioâ€economic impact classification of alien taxa (<scp>SEICAT</scp>). Methods in Ecology and Evolution, 2018, 9, 159-168.	5.2	244
11	Topographyâ€driven isolation, speciation and a global increase of endemism with elevation. Global Ecology and Biogeography, 2016, 25, 1097-1107.	5.8	243
12	Integrative invasion science: model systems, multiâ€site studies, focused metaâ€analysis and invasion syndromes. New Phytologist, 2013, 200, 615-633.	7.3	219
13	Explaining people's perceptions of invasive alien species: A conceptual framework. Journal of Environmental Management, 2019, 229, 10-26.	7.8	184
14	Integrating ecosystem services and disservices: insights from plant invasions. Ecosystem Services, 2017, 23, 94-107.	5.4	179
15	Selecting predictors to maximize the transferability of species distribution models: lessons from crossâ€continental plant invasions. Global Ecology and Biogeography, 2017, 26, 275-287.	5.8	175
16	Plant invasions into mountains and alpine ecosystems: current status and future challenges. Alpine Botany, 2016, 126, 89-103.	2.4	166
17	Risk assessment, eradication, and biological control: global efforts to limit Australian acacia invasions. Diversity and Distributions, 2011, 17, 1030-1046.	4.1	165
18	Biological Flora of the British Isles: <i>Ambrosia artemisiifolia</i> . Journal of Ecology, 2015, 103, 1069-1098.	4.0	164

#	Article	IF	CITATIONS
19	A conceptual map of invasion biology: Integrating hypotheses into a consensus network. Global Ecology and Biogeography, 2020, 29, 978-991.	5.8	150
20	Non-native and native organisms moving into high elevation and high latitude ecosystems in an era of climate change: new challenges for ecology and conservation. Biological Invasions, 2016, 18, 345-353.	2.4	127
21	Processes at multiple scales affect richness and similarity of nonâ€native plant species in mountains around the world. Global Ecology and Biogeography, 2012, 21, 236-246.	5.8	120
22	The progress of interdisciplinarity in invasion science. Ambio, 2017, 46, 428-442.	5.5	120
23	Island Biodiversity in the Anthropocene. Annual Review of Environment and Resources, 2019, 44, 31-60.	13.4	110
24	Integrating invasive species policies across ornamental horticulture supply chains to prevent plant invasions. Journal of Applied Ecology, 2018, 55, 92-98.	4.0	108
25	Will climate change increase the risk of plant invasions into mountains?. Ecological Applications, 2016, 26, 530-544.	3.8	103
26	Alien flora of mountains: global comparisons for the development of local preventive measures against plant invasions. Diversity and Distributions, 2011, 17, 103-111.	4.1	102
27	Reconciling conflicting perspectives for biodiversity conservation in the Anthropocene. Frontiers in Ecology and the Environment, 2014, 12, 131-137.	4.0	99
28	Biological Flora of the British Isles: <i>Phragmites australis</i> . Journal of Ecology, 2017, 105, 1123-1162.	4.0	96
29	Alien plants as mediators of ecosystem services and disservices in urban systems: a global review. Biological Invasions, 2017, 19, 3571-3588.	2.4	83
30	Invasion syndromes: a systematic approach for predicting biological invasions and facilitating effective management. Biological Invasions, 2020, 22, 1801-1820.	2.4	83
31	Eâ€commerce trade in invasive plants. Conservation Biology, 2015, 29, 1658-1665.	4.7	82
32	Plant invasions in the Anthropocene. Science, 2017, 358, 724-725.	12.6	79
33	The role of bioclimatic origin, residence time and habitat context in shaping non-native plant distributions along an altitudinal gradient. Biological Invasions, 2010, 12, 4003-4018.	2.4	75
34	Plant Invasions in Mountains: Global Lessons for Better Management. Mountain Research and Development, 2011, 31, 380-387.	1.0	72
35	Global Island Monitoring Scheme (GIMS): a proposal for the long-term coordinated survey and monitoring of native island forest biota. Biodiversity and Conservation, 2018, 27, 2567-2586.	2.6	72
36	Understanding misunderstandings in invasion science: why experts don't agree on common concepts andÂriskÂassessments. NeoBiota, 0, 20, 1-30.	1.0	70

#	Article	IF	Citations
37	Wider spectrum of fruit traits in invasive than native floras may increase the vulnerability of oceanic islands to plant invasions. Oikos, 2009, 118, 1327-1334.	2.7	68
38	Mountain roads and nonâ€native species modify elevational patterns of plant diversity. Global Ecology and Biogeography, 2018, 27, 667-678.	5.8	64
39	Mountain roads shift native and nonâ€native plant species' ranges. Ecography, 2017, 40, 353-364.	4.5	63
40	Quantifying plasticity in vessel grouping – added value from the image analysis tool ROXAS. IAWA Journal, 2013, 34, 433-445.	2.7	62
41	Strong below-ground competition shapes tree regeneration in invasiveCinnamomum verumforests. Journal of Ecology, 2007, 95, 273-282.	4.0	61
42	Running off the road: roadside non-native plants invading mountain vegetation. Biological Invasions, 2018, 20, 3461-3473.	2.4	59
43	Responsible Use of Language in Scientific Writing and Science Communication. BioScience, 2014, 64, 719-724.	4.9	58
44	Enabling Effective Problem-oriented Research for Sustainable Development. Ecology and Society, 2012, 17, .	2.3	55
45	Towards an Integrative, Eco-Evolutionary Understanding of Ecological Novelty: Studying and Communicating Interlinked Effects of Global Change. BioScience, 2019, 69, 888-899.	4.9	55
46	Transdisciplinarity in EcoHealth: Status and Future Prospects. EcoHealth, 2008, 5, 1-3.	2.0	53
47	Influence of light and nutrient conditions on seedling growth of native and invasive trees in the Seychelles. Biological Invasions, 2009, 11, 1941-1954.	2.4	53
48	Managing successional trajectories in alien-dominated, novel ecosystems by facilitating seedling regeneration: A case study. Biological Conservation, 2010, 143, 1792-1802.	4.1	47
49	What is the importance of islands to environmental conservation?. Environmental Conservation, 2017, 44, 311-322.	1.3	47
50	Invasive trees show only weak potential to impact nutrient dynamics in phosphorusâ€poor tropical forests in the Seychelles. Functional Ecology, 2008, 22, 359-366.	3.6	45
51	Towards a Publication Culture in Transdisciplinary Research. Gaia, 2007, 16, 22-26.	0.7	45
52	Transdisciplinary research is needed to predict plant invasions in an era of global change. Trends in Ecology and Evolution, 2010, 25, 619-620.	8.7	43
53	Influence of Drought and Shade on Seedling Growth of Native and Invasive Trees in the Seychelles. Biotropica, 2008, 40, 543-549.	1.6	42
54	Range limits and population dynamics of non-native plants spreading along elevation gradients. Perspectives in Plant Ecology, Evolution and Systematics, 2016, 20, 46-55.	2.7	40

#	Article	IF	CITATIONS
55	Fame, glory and neglect in meta-analyses. Trends in Ecology and Evolution, 2011, 26, 493-494.	8.7	36
56	Costâ€effective monitoring of biological invasions under global change: a modelâ€based framework. Journal of Applied Ecology, 2016, 53, 1317-1329.	4.0	35
57	How to Achieve Effectiveness in Problem-Oriented Landscape Research: The Example of Research on Biotic Invasions. Living Reviews in Landscape Research, 0, 2, .	0.0	35
58	Island biology: looking towards the future. Biology Letters, 2014, 10, 20140719.	2.3	34
59	Introduced weed richness across altitudinal gradients in Hawai'i: humps, humans and water-energy dynamics. Biological Invasions, 2010, 12, 4019-4031.	2.4	33
60	Plant Invasions into Mountain Protected Areas: Assessment, Prevention and Control at Multiple Spatial Scales., 2013,, 89-113.		31
61	Are Non-Native Plants Perceived to Be More Risky? Factors Influencing Horticulturists' Risk Perceptions of Ornamental Plant Species. PLoS ONE, 2014, 9, e102121.	2.5	30
62	Non-native Species and the Aesthetics of Nature. , 2017, , 311-324.		30
63	Using the "regime shift―concept in addressing social–ecological change. Geographical Research, 2018, 56, 26-41.	1.8	29
64	Genetically based differentiation in growth of multiple non-native plant species along a steep environmental gradient. Oecologia, 2012, 170, 89-99.	2.0	28
65	Native faunal communities depend on habitat from non-native plants in novel but not in natural ecosystems. Biodiversity and Conservation, 2016, 25, 503-523.	2.6	26
66	"The upper limits of vegetation on Mauna Loa, Hawaii― a 50th-anniversary reassessment. Ecology, 2011, 92, 518-525.	3.2	24
67	Leaf litter of a dominant cushion plant shifts nitrogen mineralization to immobilization at high but not low temperature in an alpine meadow. Plant and Soil, 2014, 383, 415-426.	3.7	24
68	Scientific and Normative Foundations for the Valuation of Alien-Species Impacts: Thirteen Core Principles. BioScience, 0, , biw160.	4.9	24
69	Human impact, climate and dispersal strategies determine plant invasion on islands. Journal of Biogeography, 2021, 48, 1889-1903.	3.0	23
70	Response to Comment on "Climatic Niche Shifts Are Rare Among Terrestrial Plant Invaders― Science, 2012, 338, 193-193.	12.6	21
71	Simplification of shade tree diversity reduces nutrient cycling resilience in coffee agroforestry. Journal of Applied Ecology, 2019, 56, 119-131.	4.0	21
72	Elevational distribution limits of non-native species: combining observational and experimental evidence. Plant Ecology and Diversity, 2011, 4, 363-371.	2.4	20

#	Article	IF	CITATIONS
73	Managing invasive species amidst high uncertainty and novelty. Trends in Ecology and Evolution, 2013, 28, 255-256.	8.7	20
74	Case Study: Management of Novel Ecosystems in the Seychelles. , 2013, , 228-238.		20
75	Performance of the herb <i>Verbascum thapsus</i> along environmental gradients in its native and nonâ€native ranges. Journal of Biogeography, 2015, 42, 132-143.	3.0	20
76	MIREN: A New Research Network Concerned With Plant Invasion into Mountain Areas. Mountain Research and Development, 2006, 26, 80-81.	1.0	19
77	Reduced risk for positive soil-feedback on seedling regeneration by invasive trees on a very nutrient-poor soil in Seychelles. Biological Invasions, 2010, 12, 97-102.	2.4	19
78	Threats to Paradise? Plant Invasions in Protected Areas of the Western Indian Ocean Islands. , 2013, , 423-447.		19
79	Moving up and over: redistribution of plants in alpine, Arctic, and Antarctic ecosystems under global change. Arctic, Antarctic, and Alpine Research, 2020, 52, 651-665.	1.1	19
80	Linking landscape futures with biodiversity conservation strategies in northwest Iberia — A simulation study combining surrogates with a spatio-temporal modelling approach. Ecological Informatics, 2016, 33, 85-100.	5.2	18
81	A Habitat-Classification Framework and Typology for Understanding, Valuing, and Managing Invasive Species Impacts., 2009,, 77-101.		17
82	Different environmental drivers of alien tree invasion affect different life-stages and operate at different spatial scales. Forest Ecology and Management, 2019, 433, 263-275.	3.2	16
83	The 50 Most Important Questions Relating to the Maintenance and Restoration of an Ecological Continuum in the European Alps. PLoS ONE, 2013, 8, e53139.	2.5	15
84	The <i>Mountain Invasion Research Network (MIREN)</i> Addressing an Ecological Consequence of Global Change. Gaia, 2014, 23, 263-265.	0.7	15
85	A new golden era in island biogeography. Frontiers of Biogeography, 2015, 7, .	1.8	15
86	Comparative ecological research on oceanic islands. Perspectives in Plant Ecology, Evolution and Systematics, 2010, 12, 81-82.	2.7	14
87	Global and regional nested patterns of nonâ€native invasive floras on tropical islands. Journal of Biogeography, 2014, 41, 823-832.	3.0	14
88	Discovering the wild side of urban plants through public engagement. Plants People Planet, 2021, 3, 389-401.	3.3	14
89	Integrative Ecological Research: Case-Specific Validation of Ecological Knowledge for Environmental Problem Solving. Gaia, 2006, 15, 115-120.	0.7	13
90	Variation of biomass and morphology of the cushion plant <scp><i>Androsace tapete</i></scp> along an elevational gradient in the <scp>T</scp> ibetan <scp>P</scp> lateau. Plant Species Biology, 2014, 29, E64.	1.0	12

#	Article	IF	Citations
91	Introduction to the Special Issue: Advances in island plant biology since Sherwin Carlquist'sIsland Biology. AoB PLANTS, 2016, 8, plv148.	2.3	12
92	Ecological Novelty: Towards an Interdisciplinary Understanding of Ecological Change in the Anthropocene., 2015,, 19-37.		11
93	Think globally, measure locally: The MIREN standardized protocol for monitoring plant species distributions along elevation gradients. Ecology and Evolution, 2022, 12, e8590.	1.9	11
94	Developing the Environmental Humanities: A Swiss Perspective. Gaia, 2014, 23, 67-69.	0.7	9
95	Horticultural plant use as a soâ€far neglected pillar of ex situ conservation. Conservation Letters, 0, , e12825.	5.7	7
96	Applying the Environmental Humanities. Gaia, 2018, 27, 254-256.	0.7	6
97	Plant sciences for the Anthropocene: What can we learn from research in urban areas?. Plants People Planet, 2020, 2, 286-289.	3.3	6
98	Seeing the Environment through the Humanities: A New Window on Grand Societal Challenges. Gaia, 2015, 24, 134-136.	0.7	5
99	Moving Toward Global Strategies for Managing Invasive Alien Species. , 2022, , 331-360.		4
100	Introductionâ€"Losing the High Ground: Rapid Transformation of Tropical Island Alpine and Subalpine Environments. Arctic, Antarctic, and Alpine Research, 2014, 46, 705-708.	1.1	3
101	Kommunikationskompetenz – Eine Bedingung für erfolgreichen Wissensaustausch. Gaia, 2009, 18, 264-266.	0.7	2
102	Wissensaustausch zwischen Forschung und Praxis erfolgreich gestalten. Gaia, 2015, 24, 278-280.	0.7	2
103	Alien Plant Species: Environmental Risks in Agricultural and Agro-Forest Landscapes Under Climate Change. Climate Change Management, 2019, , 215-234.	0.8	2
104	Urban Agriculture: Passing Fad or New Prospects for Agriculture and Cities?. Gaia, 2016, 25, 128-130.	0.7	2
105	Time for a biodiversity turn in sustainability science. Gaia, 2020, 29, 272-274.	0.7	2
106	Global networks: a reply to Khurooet al Frontiers in Ecology and the Environment, 2009, 7, 518-518.	4.0	1
107	Upscaling research and teaching on the <i>Sustainable Development Goals</i> in the arts, humanities, and social sciences. Gaia, 2022, 31, 57-59.	0.7	1
108	No green deal without a nature-based economy. Gaia, 2021, 30, 281-283.	0.7	1

#	Article	IF	CITATIONS
109	Engagement fýr inter- und transdisziplinÃæ Forschung zur nachhaltigen EntwicklungCommitment to Inter- and Transdisciplinary Research for Sustainable Development. Gaia, 2013, 22, 142-144.	0.7	o
110	Eine große Transformation der Schweiz: Auf Bewärtes setzen und mit Neuem experimentieren. Gaia, 2016, 25, 64-66.	0.7	0
111	Endemic macrophyte is more plastic than two cosmopolitan species in fluctuating water levels and nutrient-enriched conditions. Transactions of the Royal Society of South Australia, 2021, 145, 25-44.	0.4	O
112	Thirty years of <i>GAIA:</i> a constant in a fast-changing world. Gaia, 2022, 31, 4-5.	0.7	0