Zewei Quan ## List of Publications by Year in descending order Source: https://exaly.com/author-pdf/8137880/publications.pdf Version: 2024-02-01 | | | 76326 | 79698 | |------------|----------------|--------------|----------------| | 94 | 5,749 | 40 | 73 | | papers | citations | h-index | g-index | | | | | | | | | | | | 97 | 97 | 97 | 7765 | | <i>)</i> / | <i>J1</i> | <i>31</i> | 7703 | | all docs | docs citations | times ranked | citing authors | | | | | | | # | Article | IF | CITATIONS | |----|---|------|-----------| | 1 | Controllable synthesis of platinum–tin intermetallic nanoparticles with high electrocatalytic performance for ethanol oxidation. Inorganic Chemistry Frontiers, 2022, 9, 1143-1151. | 6.0 | 5 | | 2 | Hexagonal PtBi Intermetallic Inlaid with Subâ€Monolayer Pb Oxyhydroxide Boosts Methanol Oxidation. Small, 2022, 18, e2107803. | 10.0 | 24 | | 3 | Integrated Afterglow and Selfâ€Trapped Exciton Emissions in Hybrid Metal Halides for Antiâ€Counterfeiting Applications. Advanced Materials, 2022, 34, e2200607. | 21.0 | 73 | | 4 | Pressureâ€Induced Amorphization and Crystallization of Heterophase Pd Nanostructures. Small, 2022, 18, e2106396. | 10.0 | 9 | | 5 | Selfâ€Trapped Exciton Emission with High Thermal Stability in Antimonyâ€Doped Hybrid Manganese
Chloride. Advanced Optical Materials, 2022, 10, . | 7.3 | 34 | | 6 | Dangling Octahedra Enable Edge States in 2D Lead Halide Perovskites. Advanced Materials, 2022, 34, e2201666. | 21.0 | 22 | | 7 | Zero-dimensional hybrid binuclear manganese chloride with thermally stable yellow emission.
Chemical Communications, 2022, 58, 6926-6929. | 4.1 | 5 | | 8 | Pressureâ€Engineered Photoluminescence Tuning in Zeroâ€Dimensional Lead Bromide Trimer Clusters.
Angewandte Chemie, 2021, 133, 2615-2619. | 2.0 | 15 | | 9 | Pressureâ€Engineered Photoluminescence Tuning in Zeroâ€Dimensional Lead Bromide Trimer Clusters.
Angewandte Chemie - International Edition, 2021, 60, 2583-2587. | 13.8 | 66 | | 10 | Trace Pd modified intermetallic PtBi nanoplates towards efficient formic acid electrocatalysis. Journal of Materials Chemistry A, 2021, 9, 9602-9608. | 10.3 | 36 | | 11 | A Tensileâ€Strained Pt–Rh Singleâ€Atom Alloy Remarkably Boosts Ethanol Oxidation. Advanced Materials, 2021, 33, e2008508. | 21.0 | 111 | | 12 | Structure and Photoluminescence Transformation in Hybrid Manganese(II) Chlorides. Inorganic Chemistry, 2021, 60, 6600-6606. | 4.0 | 27 | | 13 | Upconverted Metal–Organic Framework Janus Architecture for Near-Infrared and Ultrasound
Co-Enhanced High Performance Tumor Therapy. ACS Nano, 2021, 15, 12342-12357. | 14.6 | 148 | | 14 | Highly Luminescent Metalâ€Free Perovskite Single Crystal for Biocompatible Xâ€Ray Detector to Attain Highest Sensitivity. Advanced Materials, 2021, 33, e2102190. | 21.0 | 46 | | 15 | Excitationâ€Dependent Emission Color Tuning of OD Cs ₂ InBr ₅ ·H ₂ O at High Pressure. Advanced Functional Materials, 2021, 31, 2104923. | 14.9 | 35 | | 16 | Pressure-Driven Reverse Intersystem Crossing: New Path toward Bright Deep-Blue Emission of Lead-Free Halide Double Perovskites. Journal of the American Chemical Society, 2021, 143, 15176-15184. | 13.7 | 59 | | 17 | Thermochromism and piezochromism of an atomically precise high-nuclearity silver sulfide nanocluster. Chemical Communications, 2021, 57, 2372-2375. | 4.1 | 16 | | 18 | Poly(vinylidene difluoride) coating on Cu current collector for high-performance Na metal anode.
Energy Storage Materials, 2020, 24, 588-593. | 18.0 | 48 | | # | Article | IF | CITATIONS | |----|--|------|-----------| | 19 | Pressure-Induced Remarkable Enhancement of Self-Trapped Exciton Emission in One-Dimensional CsCu ₂ 1 ₃ with Tetrahedral Units. Journal of the American Chemical Society, 2020, 142, 1786-1791. | 13.7 | 121 | | 20 | Colloidal syntheses of zero-dimensional Cs $<$ sub $>$ 4 $<$ /sub $>$ SnX $<$ sub $>$ 6 $<$ /sub $>$ (X = Br, I) nanocrystals with high emission efficiencies. Chemical Communications, 2020, 56, 387-390. | 4.1 | 35 | | 21 | 0D Cs $<$ sub $>$ 3 $<$ /sub $>$ Cu $<$ sub $>$ 2 $<$ /sub $>$ X $<$ sub $>$ 5 $<$ /sub $>$ (X = I, Br, and Cl) Nanocrystals: Colloidal Syntheses and Optical Properties. Small, 2020, 16, e1905226. | 10.0 | 158 | | 22 | Self-assembly of anisotropic nanoparticles into functional superstructures. Chemical Society Reviews, 2020, 49, 6002-6038. | 38.1 | 140 | | 23 | Novel Biâ€Doped Amorphous SnO <i>_x</i> Nanoshells for Efficient Electrochemical CO ₂ Reduction into Formate at Low Overpotentials. Advanced Materials, 2020, 32, e2002822. | 21.0 | 104 | | 24 | Supercrystallographic Reconstruction of 3D Nanorod Assembly with Collectively Anisotropic Upconversion Fluorescence. Nano Letters, 2020, 20, 7367-7374. | 9.1 | 17 | | 25 | Binary Nanoparticle Superlattices for Plasmonically Modulating Upconversion Luminescence. Small, 2020, 16, e2002066. | 10.0 | 11 | | 26 | Selected Negative Linear Compressibilities in the Metal–Organic Framework of [Cu(4,4′-bpy) ₂ (H ₂ O) ₂]·SiF ₆ . Inorganic Chemistry, 2020, 59, 1715-1722. | 4.0 | 19 | | 27 | Shape-directed self-assembly of nanodumbbells into superstructure polymorphs. Chemical Science, 2020, 11, 4065-4073. | 7.4 | 15 | | 28 | Trimetallic Synergy in Intermetallic PtSnBi Nanoplates Boosts Formic Acid Oxidation. Advanced Materials, 2019, 31, e1903683. | 21.0 | 112 | | 29 | Superstructures: Directing Gold Nanoparticles into Freeâ€Standing Honeycombâ€Like Ordered
Mesoporous Superstructures (Small 31/2019). Small, 2019, 15, 1970165. | 10.0 | 0 | | 30 | Anisotropic Arm Growth in Unconventional Semiconductor CdSe/CdS Nanotetrapod Synthesis Using Core/Shell CdSe/CdS as Seeds. Journal of Physical Chemistry C, 2019, 123, 19238-19245. | 3.1 | 13 | | 31 | Hybrid Protective Layer for Stable Sodium Metal Anodes at High Utilization. ACS Applied Materials & Lamp; Interfaces, 2019, 11, 37693-37700. | 8.0 | 51 | | 32 | Monodisperse tin nanoparticles and hollow tin oxide nanospheres as anode materials for high performance lithium ion batteries. Inorganic Chemistry Frontiers, 2019, 6, 473-476. | 6.0 | 14 | | 33 | Yolk–shell structured SnSe as a high-performance anode for Na-ion batteries. Inorganic Chemistry Frontiers, 2019, 6, 562-565. | 6.0 | 48 | | 34 | Understanding Fe ₃ O ₄ Nanocube Assembly with Reconstruction of a Consistent Superlattice Phase Diagram. Journal of the American Chemical Society, 2019, 141, 3198-3206. | 13.7 | 37 | | 35 | Lithiophilic Ag Nanoparticle Layer on Cu Current Collector toward Stable Li Metal Anode. ACS Applied Materials & Company (1988) (1988) Materials & Company (1988) (1988) Materials & Company (1988) (1 | 8.0 | 120 | | 36 | Metal halide perovskites under compression. Journal of Materials Chemistry A, 2019, 7, 16089-16108. | 10.3 | 42 | | # | Article | IF | Citations | |----|---|------|-----------| | 37 | Tin-based nanomaterials: colloidal synthesis and battery applications. Chemical Communications, 2019, 55, 8683-8694. | 4.1 | 18 | | 38 | Ordered mesoporous silver superstructures with SERS hot spots. Chemical Communications, 2019, 55, 7982-7985. | 4.1 | 18 | | 39 | Directing Gold Nanoparticles into Freeâ€Standing Honeycomb‣ike Ordered Mesoporous Superstructures. Small, 2019, 15, e1901304. | 10.0 | 8 | | 40 | One-nanometer-thick platinum-based nanowires with controllable surface structures. Nano Research, 2019, 12, 1721-1726. | 10.4 | 18 | | 41 | 3D Printing of Hierarchical Graphene Lattice for Advanced Na Metal Anodes. ACS Applied Energy
Materials, 2019, 2, 3869-3877. | 5.1 | 40 | | 42 | Facile Synthesis of Uniform Sn _{1â€"<i>>x</i>} Ge _{<i>x</i>} Alloy Nanocrystals with Tunable Bandgap. Chemistry of Materials, 2019, 31, 2248-2252. | 6.7 | 14 | | 43 | SnP0.94 nanoplates/graphene oxide composite for novel potassium-ion battery anode. Chemical Engineering Journal, 2019, 370, 677-683. | 12.7 | 77 | | 44 | Generalized Synthesis of Uniform Metal Nanoparticles Assisted with Tungsten Hexacarbonyl. Chemistry of Materials, 2019, 31, 4325-4329. | 6.7 | 15 | | 45 | Black Phosphorus: Thickness-Dependent Structural Stability and Anisotropy of Black Phosphorus (Adv. Electron. Mater. 3/2019). Advanced Electronic Materials, 2019, 5, 1970012. | 5.1 | 2 | | 46 | Ni ₃ N Nanocrystals Decorated Reduced Graphene Oxide with High Ionic Conductivity for Stable Lithium Metal Anode. ACS Applied Energy Materials, 2019, 2, 2692-2698. | 5.1 | 30 | | 47 | Rare Earth Hydroxide as a Precursor for Controlled Fabrication of Uniform \hat{l}^2 -NaYF4 Nanoparticles: A Novel, Low Cost, and Facile Method. Molecules, 2019, 24, 357. | 3.8 | 5 | | 48 | SnO ₂ patched ultrathin PtRh nanowires as efficient catalysts for ethanol electrooxidation. Journal of Materials Chemistry A, 2019, 7, 27377-27382. | 10.3 | 36 | | 49 | Thicknessâ€Dependent Structural Stability and Anisotropy of Black Phosphorus. Advanced Electronic Materials, 2019, 5, 1800712. | 5.1 | 11 | | 50 | High Pressure Structural and Optical Properties of Two-Dimensional Hybrid Halide Perovskite (CH ₃ NH ₃) ₃ Bi ₂ Br ₉ . Inorganic Chemistry, 2019, 58, 1621-1626. | 4.0 | 46 | | 51 | Thermally reduced graphene paper with fast Li ion diffusion for stable Li metal anode. Electrochimica Acta, 2019, 294, 413-422. | 5.2 | 28 | | 52 | Synthesis of Leadâ€free CsGel ₃ Perovskite Colloidal Nanocrystals and Electron Beamâ€induced Transformations. Chemistry - an Asian Journal, 2018, 13, 1654-1659. | 3.3 | 86 | | 53 | Controlled Synthesis of PtNi Hexapods for Enhanced Oxygen Reduction Reaction. Frontiers in Chemistry, 2018, 6, 468. | 3.6 | 17 | | 54 | Pressure-Induced Phase Engineering of Gold Nanostructures. Journal of the American Chemical Society, 2018, 140, 15783-15790. | 13.7 | 68 | | # | Article | IF | CITATIONS | |----|--|-------------------|-----------| | 55 | Morphologically controlled synthesis of ionic cesium iodide colloidal nanocrystals and electron beam-induced transformations. RSC Advances, 2018, 8, 18519-18524. | 3.6 | 10 | | 56 | Facile Method for the Controllable Synthesis of Cs _{<i>x</i>} -Based Perovskites. Inorganic Chemistry, 2018, 57, 6206-6209. | 4.0 | 27 | | 57 | High-Pressure Study of Perovskite-Like Organometal Halide: Band-Gap Narrowing and Structural Evolution of [NH ₃ -(CH ₂) ₄ -NH ₃]CuCl ₄ . Journal of Physical Chemistry Letters, 2017, 8, 500-506. | 4.6 | 65 | | 58 | High-Pressure Effects on Hofmann-Type Clathrates: Promoted Release and Restricted Insertion of Guest Molecules. Journal of Physical Chemistry Letters, 2017, 8, 2745-2750. | 4.6 | 13 | | 59 | pH-responsive poly (acrylic acid)-gated mesoporous silica and its application in oral colon targeted drug delivery for doxorubicin. Colloids and Surfaces B: Biointerfaces, 2017, 154, 287-296. | 5.0 | 119 | | 60 | Highâ€Pressure Bandâ€Gap Engineering in Leadâ€Free Cs ₂ AgBiBr ₆ Double Perovskite. Angewandte Chemie, 2017, 129, 16185-16189. | 2.0 | 28 | | 61 | Highâ€Pressure Bandâ€Gap Engineering in Leadâ€Free Cs ₂ AgBiBr ₆ Double Perovskite. Angewandte Chemie - International Edition, 2017, 56, 15969-15973. | 13.8 | 200 | | 62 | Mild synthesis of monodisperse tin nanocrystals and tin chalcogenide hollow nanostructures. Chemical Communications, 2017, 53, 11001-11004. | 4.1 | 14 | | 63 | Synthesis of Onion-Like δ-MoN Catalyst for Selective Hydrogenation. Journal of Physical Chemistry C, 2017, 121, 19451-19460. | 3.1 | 29 | | 64 | Controllable Eu valence for photoluminescence tuning in apatite-typed phosphors by the cation cosubstitution effect. Chemical Communications, 2016, 52, 7376-7379. | 4.1 | 38 | | 65 | Structural evolution induced preferential occupancy of designated cation sites by Eu ^{$2+$ in M_{5(Si_{3O_{9)_{2 (M = Sr, Ba, Y, Mn) phosphors. RSC Advances, 2016, 6, 57261-57265.}}}}} | 3.6 | 74 | | 66 | Novel yellowish-green light-emitting Ca ₁₀ (PO ₄) ₆ O:Ce ³⁺ phosphor: structural refinement, preferential site occupancy and color tuning. Chemical Communications, 2016, 52, 3376-3379. | 4.1 | 59 | | 67 | Photoluminescence tuning of Ca ₅ (PO ₄) ₃ Cl:Ce ³⁺ /Eu ²⁺ ,Tb ³⁺ /Mn phosphors: structure refinement, site occupancy, energy transfer and thermal stability. Journal of Materials Chemistry C. 2016. 4. 1281-1294. | ^{2+<} | :/sup> | | 68 | Pressure Processing of Nanocube Assemblies Toward Harvesting of a Metastable PbS Phase. Advanced Materials, 2015, 27, 4544-4549. | 21.0 | 61 | | 69 | Facet-controlled facilitation of PbS nanoarchitectures by understanding nanocrystal growth. Nanoscale, 2015, 7, 19047-19052. | 5.6 | 9 | | 70 | Porous Ice Phases with VI and Distorted VII Structures Constrained in Nanoporous Silica. Nano
Letters, 2014, 14, 6554-6558. | 9.1 | 11 | | 71 | Energy landscape of self-assembled superlattices of PbSe nanocrystals. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9054-9057. | 7.1 | 29 | | 72 | Solvent-Mediated Self-Assembly of Nanocube Superlattices. Journal of the American Chemical Society, 2014, 136, 1352-1359. | 13.7 | 120 | | # | Article | IF | Citations | |----|---|-----------------|---------------------| | 73 | High-Index Faceted Noble Metal Nanocrystals. Accounts of Chemical Research, 2013, 46, 191-202. | 15.6 | 501 | | 74 | Pressure-Induced Switching between Amorphization and Crystallization in PbTe Nanoparticles. Nano Letters, 2013, 13, 3729-3735. | 9.1 | 33 | | 75 | Shape-Control and Electrocatalytic Activity-Enhancement of Pt-Based Bimetallic Nanocrystals. Accounts of Chemical Research, 2013, 46, 1867-1877. | 15.6 | 366 | | 76 | Reversible Kirkwood–Alder Transition Observed in Pt ₃ Cu ₂ Nanoctahedron Assemblies under Controlled Solvent Annealing/Drying Conditions. Journal of the American Chemical Society, 2012, 134, 14043-14049. | 13.7 | 52 | | 77 | Timing matters: the underappreciated role of temperature ramp rate for shape control and reproducibility of quantum dot synthesis. Nanoscale, 2012, 4, 3625. | 5.6 | 14 | | 78 | Tilted Face-Centered-Cubic Supercrystals of PbS Nanocubes. Nano Letters, 2012, 12, 4409-4413. | 9.1 | 59 | | 79 | Low Packing Density Self-Assembled Superstructure of Octahedral Pt ₃ Ni Nanocrystals.
Nano Letters, 2011, 11, 2912-2918. | 9.1 | 50 | | 80 | Reversal of Hall–Petch Effect in Structural Stability of PbTe Nanocrystals and Associated Variation of Phase Transformation. Nano Letters, 2011, 11, 5531-5536. | 9.1 | 39 | | 81 | Synthesis of PbSeTe Single Ternary Alloy and Core/Shell Heterostructured Nanocubes. Journal of the American Chemical Society, 2011, 133, 17590-17593. | 13.7 | 39 | | 82 | Selfâ€Assembly of Lead Chalcogenide Nanocrystals. Chemistry - an Asian Journal, 2011, 6, 1126-1136. | 3.3 | 16 | | 83 | Superlattices with non-spherical building blocks. Nano Today, 2010, 5, 390-411. | 11.9 | 200 | | 84 | Tm3+ and/or Dy3+ doped LaOCl nanocrystalline phosphors for field emission displays. Journal of Materials Chemistry, 2009, 19, 8936. | 6.7 | 124 | | 85 | Avidin conjugation to up-conversion phosphor NaYF4:Yb3+, Er3+ by the oxidation of the oligosaccharide chains. Journal of Nanoparticle Research, 2009, 11, 821-829. | 1.9 | 15 | | 86 | Multicolor Tuning of Manganese-Doped ZnS Colloidal Nanocrystals. Langmuir, 2009, 25, 10259-10262. | 3.5 | 87 | | 87 | Uniform Colloidal Alkaline Earth Metal Fluoride Nanocrystals: Nonhydrolytic Synthesis and Luminescence Properties. Inorganic Chemistry, 2008, 47, 9509-9517. | 4.0 | 100 | | 88 | Shape-Controllable Synthesis and Upconversion Properties of Lutetium Fluoride (Doped with) Tj ETQq0 0 0 rgBT Chemistry C, 2008, 112, 13395-13404. | Overlock
3.1 | 10 Tf 50 147
110 | | 89 | Shape controllable synthesis and upconversion properties of NaYbF4/NaYbF4:Er3+ and YbF3/YbF3:Er3+ microstructures. Journal of Materials Chemistry, 2008, 18, 1353. | 6.7 | 118 | | 90 | A Novel and Efficient Route to Se Nano/Microstructures with Controllable Phase and Shape. Crystal Growth and Design, 2008, 8, 3834-3839. | 3.0 | 14 | ## Zewei Quan | # | Article | IF | CITATION | |----|---|-----|----------| | 91 | Y2O3 : Eu3+ Microspheres: Solvothermal Synthesis and Luminescence Properties. Crystal Growth and Design, 2007, 7, 730-735. | 3.0 | 213 | | 92 | Growth of Highly Crystalline CaMoO4:Tb3+Phosphor Layers on Spherical SiO2Particles via Solâ^'Gel Process:Â Structural Characterization and Luminescent Properties. Crystal Growth and Design, 2007, 7, 1797-1802. | 3.0 | 66 | | 93 | Synthesis and Characterization of High-Quality ZnS, ZnS:Mn2+, and ZnS:Mn2+/ZnS (Core/Shell) Luminescent Nanocrystals. Inorganic Chemistry, 2007, 46, 1354-1360. | 4.0 | 158 | | 94 | Fabrication and photoluminescence properties of core-shell structured spherical SiO2@Gd2Ti2O7:Eu3+ phosphors. Journal of Materials Research, 2006, 21, 2232-2240. | 2.6 | 12 |