Elzbieta Trzop

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8137693/publications.pdf

Version: 2024-02-01

201674 223800 2,329 72 27 46 h-index citations g-index papers 75 75 75 2013 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Thermal and Magnetic Field Switching in a Twoâ€Step Hysteretic Mn ^{III} Spin Crossover Compound Coupled to Symmetry Breakings. Angewandte Chemie, 2022, 134, e202114021.	2.0	5
2	Thermal and Magnetic Field Switching in a Twoâ€Step Hysteretic Mn ^{III} Spin Crossover Compound Coupled to Symmetry Breakings. Angewandte Chemie - International Edition, 2022, 61, .	13.8	15
3	Domain Wall Dynamics in a Ferroelastic Spin Crossover Complex with Giant Magnetoelectric Coupling. Journal of the American Chemical Society, 2022, 144, 195-211.	13.7	21
4	Dynamical limits for the molecular switching in a photoexcited material revealed by X-ray diffraction. Communications Physics, 2022, 5, .	5. 3	3
5	Guest induced reversible on–off switching of elastic frustration in a 3D spin crossover coordination polymer with room temperature hysteretic behaviour. Chemical Science, 2021, 12, 1317-1326.	7.4	36
6	Giant Magnetoelectric Coupling and Magnetic-Field-Induced Permanent Switching in a Spin Crossover Mn(III) Complex. Inorganic Chemistry, 2021, 60, 6167-6175.	4.0	21
7	Out-of-equilibrium lattice response to photo-induced charge-transfer in a MnFe Prussian blue analogue. Journal of Materials Chemistry C, 2021, 9, 6773-6780.	5 . 5	9
8	Strain wave pathway to semiconductor-to-metal transition revealed by time-resolved X-ray powder diffraction. Nature Communications, 2021, 12, 1239.	12.8	29
9	Spin Crossover in a Series of Non-Hofmann-Type Fe(II) Coordination Polymers Based on [Hg(SeCN) ₃] ^{â^'} or [Hg(SeCN) ₄] ^{2â€"} Building Blocks. Inorganic Chemistry, 2021, 60, 11048-11057.	4.0	3
10	Hysteresis Photomodulation via Single-Crystal-to-Single-Crystal Isomerization of a Photochromic Chain of Dysprosium Single-Molecule Magnets. Journal of the American Chemical Society, 2020, 142, 931-936.	13.7	68
11	Stressâ€Induced Domain Wall Motion in a Ferroelastic Mn 3+ Spin Crossover Complex. Angewandte Chemie, 2020, 132, 13407-13414.	2.0	13
12	Structure:function relationships for thermal and light-induced spin-crossover in isomorphous molecular materials. Journal of Materials Chemistry C, 2020, 8, 8420-8429.	5 . 5	11
13	Heterobimetallic complexes from OD clusters to 3D networks based on various polycyanometallates and [Cu(dmpn) ₂] ²⁺ (dmpn = 2,2-dimethyl-1,3-diaminopropane): synthesis, crystal structures and magnetic properties. CrystEngComm, 2020, 22, 2806-2816.	2.6	8
14	Stressâ€Induced Domain Wall Motion in a Ferroelastic Mn ³⁺ Spin Crossover Complex. Angewandte Chemie - International Edition, 2020, 59, 13305-13312.	13.8	49
15	Symmetry breakings in a metal organic framework with a confined guest. Physical Review B, 2020, 101, .	3.2	10
16	One-dimensional cyanide-bridged Fe(III)–Mn(II) magnetic complexes with different configurations derived from a new pentacyanoiron(III) building block. Transition Metal Chemistry, 2020, 45, 373-380.	1.4	5
17	Tuning of crystallization method and ligand conformation to give a mononuclear compound or two-dimensional SCO coordination polymer based on a new semi-rigid V-shaped bis-pyridyl bis-amide ligand. Acta Crystallographica Section C, Structural Chemistry, 2020, 76, 412-418.	0.5	1
18	A rare octacoordinated mononuclear iron(III) spin-crossover compound: synthesis, crystal structure and magnetic properties. Acta Crystallographica Section C, Structural Chemistry, 2020, 76, 856-862.	0.5	0

#	Article	IF	Citations
19	The First Observation of Hidden Hysteresis in an Iron(III) Spin rossover Complex. Angewandte Chemie, 2019, 131, 11937-11941.	2.0	23
20	Single Laser Shot Photoinduced Phase Transition of Rubidium Manganese Hexacyanoferrate Investigated by X-ray Diffraction. European Journal of Inorganic Chemistry, 2019, 2019, 3121-3121.	2.0	1
21	The First Observation of Hidden Hysteresis in an Iron(III) Spinâ€Crossover Complex. Angewandte Chemie - International Edition, 2019, 58, 11811-11815.	13.8	57
22	An unprecedented hetero-bimetallic three-dimensional spin crossover coordination polymer based on the tetrahedral [Hg(SeCN)4]2â° building block. Chemical Communications, 2019, 55, 4607-4610.	4.1	17
23	Unconventional dihydrogen-bond interaction induced cyanide-bridged chiral nano-sized magnetic molecular wheel: synthesis, crystal structure and systematic theoretical magnetism investigation. Journal of Materials Chemistry C, 2019, 7, 3623-3633.	5 . 5	11
24	Cyanide-bridged polynuclear heterobimetallic complexes: synthesis, crystal structures, and magnetic properties. Transition Metal Chemistry, 2019, 44, 383-389.	1.4	5
25	Single Laser Shot Photoinduced Phase Transition of Rubidium Manganese Hexacyanoferrate Investigated by Xâ€ray Diffraction. European Journal of Inorganic Chemistry, 2019, 2019, 3142-3147.	2.0	10
26	A thermal- and light-induced switchable one-dimensional rare loop-like spin crossover coordination polymer. Dalton Transactions, 2019, 48, 17014-17021.	3.3	10
27	A serials of sandwich-like trinuclear and one-dimensional chain cyanide-bridged iron(III)-copper(II) complexes: Syntheses, crystal structures and magnetic properties. Journal of Solid State Chemistry, 2018, 260, 59-66.	2.9	6
28	Impact of the use of sterically congested Ir(<scp>iii</scp>) complexes on the performance of light-emitting electrochemical cells. Journal of Materials Chemistry C, 2018, 6, 6385-6397.	5. 5	18
29	Polynuclear and one-dimensional cyanide-bridged heterobimetallic complexes: synthesis, crystal structures and magnetic properties. Journal of Chemical Sciences, 2018, 130, 1.	1.5	3
30	{[Hg(SCN) ₃] ₂ (μ-L)} ^{2–} : An Efficient Secondary Building Unit for the Synthesis of 2D Iron(II) Spin-Crossover Coordination Polymers. Inorganic Chemistry, 2018, 57, 1562-1571.	4.0	22
31	One-dimensional cyanide-bridged Cr(III)–Cu(II) complexes: synthesis, crystal structures and magnetic properties. Transition Metal Chemistry, 2018, 43, 45-52.	1.4	6
32	Increasing spin crossover cooperativity in 2D Hofmann-type materials with guest molecule removal. Chemical Science, 2018, 9, 5623-5629.	7.4	84
33	Substitute Group-Tuned Schiff-Base Manganese(III)-Based Cyanide-Bridged Bimetallic Complexes: Synthesis, Crystal Structures and Magnetic Properties. Journal of Chemical Research, 2018, 42, 28-32.	1.3	2
34	Solvatomorphismâ€Induced 45 K Hysteresis Width in a Spinâ€Crossover Mononuclear Compound. Chemistry - A European Journal, 2018, 24, 14760-14767.	3.3	29
35	Decoupling anion-ordering and spin-Peierls transitions in a strongly one-dimensional organic conductor with a chessboard structure, (<i>o</i> he ₂ TTF) ₂ NO ₃ . IUCrJ, 2018, 5, 361-372.	2.2	13
36	Reactivity of Functionalized Ynamides with Tetracyanoethylene: Scope, Limitations and Optoelectronic Properties of the Adducts. Chemistry - an Asian Journal, 2017, 12, 1338-1346.	3.3	23

#	Article	IF	CITATIONS
37	Photoinduced reversible spin-state switching of an FeIII complex assisted by a halogen-bonded supramolecular network. Chemical Communications, 2017, 53, 10283-10286.	4.1	25
38	Formation of local spin-state concentration waves during the relaxation from a photoinduced state in a spin-crossover polymer. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2017, 73, 660-668.	1.1	6
39	The role of symmetry breaking in the structural trapping of light-induced excited spin states. Chemical Communications, 2017, 53, 13268-13271.	4.1	34
40	First Step Towards a Devil's Staircase in Spinâ€Crossover Materials. Angewandte Chemie - International Edition, 2016, 55, 8675-8679.	13.8	94
41	Reply To: How Does Substitutional Doping Affect Visible Light Absorption in a Series of Homodisperse Ti ₁₁ Polyoxotitanate Nanoparticles—A Comment on the Band Gap Determination of the Fe ^{II} Cages. Chemistry - A European Journal, 2016, 22, 4634-4636.	3.3	0
42	First Step Towards a Devil's Staircase in Spinâ€Crossover Materials. Angewandte Chemie, 2016, 128, 8817-8821.	2.0	25
43	Innenrýcktitelbild: First Step Towards a Devil's Staircase in Spin-Crossover Materials (Angew. Chem.) Tj ETQq1 1	0.78431	4 rgBT /Ove
44	Can we deconvolute electron density changes from the dominant influence of the atomic rearrangement on molecular excitation in time-resolved diffraction studies? Physica Scripta, 2016, 91, 023003.	2.5	5
45	How Does Substitutional Doping Affect Visible Light Absorption in a Series of Homodisperse Ti ₁₁ Polyoxotitanate Nanoparticles?. Chemistry - A European Journal, 2015, 21, 11538-11544.	3.3	39
46	Molecular insight into the mode-of-action of phosphonate monolayers as active functions of hybrid metal oxide adsorbents. Case study in sequestration of rare earth elements. RSC Advances, 2015, 5, 24575-24585.	3.6	33
47	Electronic vs. structural ordering in a manganese(<scp>iii</scp>) spin crossover complex. Chemical Communications, 2015, 51, 17540-17543.	4.1	77
48	Correction: Electronic vs. structural ordering in a manganese(<scp>iii</scp>) spin crossover complex. Chemical Communications, 2015, 51, 17630-17630.	4.1	0
49	A novel manganese-doped large polyoxotitanate nanocluster. Dalton Transactions, 2014, 43, 3839-3841.	3.3	31
50	Relating structure and photoelectrochemical properties: electron injection by structurally and theoretically characterized transition metal-doped phenanthroline–polyoxotitanate nanoparticles. Physical Chemistry Chemical Physics, 2014, 16, 15792-15795.	2.8	35
51	Shedding Light on the Photochemistry of Coinage-Metal Phosphorescent Materials: A Time-Resolved Laue Diffraction Study of an Ag ^I â€"Cu ^I Tetranuclear Complex. Inorganic Chemistry, 2014, 53, 10594-10601.	4.0	27
52	Crystallography and Properties of Polyoxotitanate Nanoclusters. Chemical Reviews, 2014, 114, 9645-9661.	47.7	256
53	A Large Manganeseâ€doped Polyoxotitanate Nanocluster: Ti ₁₄ MnO ₁₄ (OH) ₂ (OEt) ₂₈ . Journal of the Chinese Chemical Society, 2013, 60, 887-890.	1.4	25
54	A manganese-doped polymeric framework of polyoxotitanate nanoclusters with a narrow band gap. Dalton Transactions, 2013, 42, 15285.	3.3	17

#	Article	IF	Citations
55	Nanosized Alkali-Metal-Doped Ethoxotitanate Clusters. Inorganic Chemistry, 2013, 52, 4750-4752.	4.0	29
56	On the Biexponential Decay of the Photoluminescence of the Two Crystallographically-Independent Molecules in Crystals of [Cu(I)(phen)(PPh ₃) ₂][BF ₄]. Journal of Physical Chemistry Letters, 2013, 4, 579-582.	4.6	25
57	Direct Observation of the Binding Mode of the Phosphonate Anchor to Nanosized Polyoxotitanate Clusters. Chemistry - A European Journal, 2013, 19, 16651-16655.	3.3	34
58	Restricted Photochemistry in the Molecular Solid State: Structural Changes on Photoexcitation of Cu(I) Phenanthroline Metal-to-Ligand Charge Transfer (MLCT) Complexes by Time-Resolved Diffraction. Journal of Physical Chemistry A, 2012, 116, 3359-3365.	2.5	60
59	Binding Modes of Carboxylate- and Acetylacetonate-Linked Chromophores to Homodisperse Polyoxotitanate Nanoclusters. Journal of the American Chemical Society, 2012, 134, 11695-11700.	13.7	129
60	Ultrafast spin-state photoswitching in a crystal and slower consecutive processes investigated by femtosecond optical spectroscopy and picosecond X-ray diffraction. Physical Chemistry Chemical Physics, 2012, 14, 6192.	2.8	79
61	Time-resolved Laue diffraction of excited species at atomic resolution: 100 ps single-pulse diffraction of the excited state of the organometallic complex Rh2(\hat{l} 4-PNP)2(PNP)2 \hat{A} -BPh4. Chemical Communications, 2011, 47, 1704.	4.1	26
62	The development of Laue techniques for single-pulse diffraction of chemical complexes: time-resolved Laue diffraction on a binuclear rhodium metal-organic complex. Acta Crystallographica Section A: Foundations and Advances, 2011, 67, 319-326.	0.3	37
63	Symmetry breaking and light-induced spin-state trapping in a mononuclear <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msup><mml:mrow><mml:mrow><mml:mrow>with the two-step thermal conversion. Physical Review B. 2010. 82</mml:mrow></mml:mrow></mml:mrow></mml:msup></mml:mrow></mml:math>	/> <mark>3.2</mark> /> <mml:< b="">m</mml:<>	text3
64	Large Polyoxotitanate Clusters: Well-Defined Models for Pure-Phase TiO ₂ Structures and Surfaces. Journal of the American Chemical Society, 2010, 132, 13669-13671.	13.7	117
65	Successive Dynamical Steps of Photoinduced Switching of a Molecular Fe(III) Spin-Crossover Material by Time-Resolved X-Ray Diffraction. Physical Review Letters, 2009, 103, 028301.	7.8	126
66	Monitoring structural transformations in crystals. 12. Course of an intramolecular [4â€+â€4] photocycloaddition in a crystal. Acta Crystallographica Section B: Structural Science, 2008, 64, 375-382.	1.8	16
67	Photoinduced phenomena and structural analysis associated with the spin-state switching in the <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td></td><td></td></mml:math>		