List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8137589/publications.pdf Version: 2024-02-01

		44069	53230
98	8,176	48	85
papers	citations	h-index	g-index
113	113	113	9155
all docs	docs citations	times ranked	citing authors

KADINLIUNC

#	Article	IF	CITATIONS
1	Fluorescence activated cell sorting—A selective tool for plant cell isolation and analysis. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2022, 101, 725-736.	1.5	13
2	Potassium transporter TRH1/KUP4 contributes to distinct auxin-mediated root system architecture responses. Plant Physiology, 2022, 188, 1043-1060.	4.8	21
3	Auxin boosts energy generation pathways to fuel pollen maturation in barley. Current Biology, 2022, 32, 1798-1811.e8.	3.9	16
4	Inactivation of the entire Arabidopsis group II GH3s confers tolerance to salinity and water deficit. New Phytologist, 2022, 235, 263-275.	7.3	23
5	KAI2 regulates seedling development by mediating lightâ€induced remodelling of auxin transport. New Phytologist, 2022, 235, 126-140.	7.3	9
6	iP & OEIP – Cytokinin Micro Application Modulates Root Development with High Spatial Resolution. Advanced Materials Technologies, 2022, 7, .	5.8	3
7	Nitrogen represses haustoria formation through abscisic acid in the parasitic plant Phtheirospermum japonicum. Nature Communications, 2022, 13, .	12.8	13
8	Studies of moss reproductive development indicate that auxin biosynthesis in apical stem cells may constitute an ancestral function for focal growth control. New Phytologist, 2021, 229, 845-860.	7.3	24
9	Auxin Metabolism in Plants. Cold Spring Harbor Perspectives in Biology, 2021, 13, a039867.	5.5	110
10	Best practices in plant cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2021, 99, 311-317.	1.5	16
11	Function of the pseudo phosphotransfer proteins has diverged between rice and Arabidopsis. Plant Journal, 2021, 106, 159-173.	5.7	7
12	Dynamics of Auxin and Cytokinin Metabolism during Early Root and Hypocotyl Growth in Theobroma cacao. Plants, 2021, 10, 967.	3.5	4
13	The chemical compound â€~Heatin' stimulates hypocotyl elongation and interferes with the Arabidopsis NIT1â€subfamily of nitrilases. Plant Journal, 2021, 106, 1523-1540.	5.7	7
14	Alterations in hormonal signals spatially coordinate distinct responses to DNA double-strand breaks in <i>Arabidopsis</i> roots. Science Advances, 2021, 7, .	10.3	10
15	Broadening the roles of UDPâ€glycosyltransferases in auxin homeostasis and plant development. New Phytologist, 2021, 232, 642-654.	7.3	31
16	Plant roots sense soil compaction through restricted ethylene diffusion. Science, 2021, 371, 276-280.	12.6	145
17	A WOX/Auxin Biosynthesis Module Controls Growth to Shape Leaf Form. Current Biology, 2020, 30, 4857-4868.e6.	3.9	69
18	HEARTBREAK Controls Post-translational Modification of INDEHISCENT to Regulate Fruit Morphology in Capsella. Current Biology, 2020, 30, 3880-3888.e5.	3.9	5

#	Article	IF	CITATIONS
19	Cell-surface receptors enable perception of extracellular cytokinins. Nature Communications, 2020, 11, 4284.	12.8	47
20	Reaction Wood Anatomical Traits and Hormonal Profiles in Poplar Bent Stem and Root. Frontiers in Plant Science, 2020, 11, 590985.	3.6	11
21	HY5 and phytochrome activity modulate shoot-to-root coordination during thermomorphogenesis in <i>Arabidopsis</i> . Development (Cambridge), 2020, 147, .	2.5	27
22	The CEP5 Peptide Promotes Abiotic Stress Tolerance, As Revealed by Quantitative Proteomics, and Attenuates the AUX/IAA Equilibrium in Arabidopsis. Molecular and Cellular Proteomics, 2020, 19, 1248-1262.	3.8	35
23	Nyctinastic thallus movement in the liverwort Marchantia polymorpha is regulated by a circadian clock. Scientific Reports, 2020, 10, 8658.	3.3	11
24	Natural Variation in Adventitious Rooting in the Alpine Perennial Arabis alpina. Plants, 2020, 9, 184.	3.5	7
25	Vernalization shapes shoot architecture and ensures the maintenance of dormant buds in the perennial <i>Arabis alpina</i> . New Phytologist, 2020, 227, 99-115.	7.3	24
26	Conifers exhibit a characteristic inactivation of auxin to maintain tissue homeostasis. New Phytologist, 2020, 226, 1753-1765.	7.3	33
27	Auxin export from proximal fruits drives arrest in temporally competent inflorescences. Nature Plants, 2020, 6, 699-707.	9.3	33
28	Control of root meristem establishment in conifers. Physiologia Plantarum, 2019, 165, 81-89.	5.2	9
29	Implantable Organic Electronic Ion Pump Enables ABA Hormone Delivery for Control of Stomata in an Intact Tobacco Plant. Small, 2019, 15, e1902189.	10.0	33
30	PIN-driven auxin transport emerged early in streptophyte evolution. Nature Plants, 2019, 5, 1114-1119.	9.3	44
31	A MYC2/MYC3/MYC4-dependent transcription factor network regulates water spray-responsive gene expression and jasmonate levels. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23345-23356.	7.1	95
32	Epigenetic Regulation of Auxin Homeostasis. Biomolecules, 2019, 9, 623.	4.0	29
33	Implantable Bioelectronics: Implantable Organic Electronic Ion Pump Enables ABA Hormone Delivery for Control of Stomata in an Intact Tobacco Plant (Small 43/2019). Small, 2019, 15, 1970233.	10.0	1
34	A role for the auxin precursor anthranilic acid in root gravitropism via regulation of <scp>PIN</scp> â€ <scp>FORMED</scp> protein polarity and relocalisation in <i>Arabidopsis</i> . New Phytologist, 2019, 223, 1420-1432.	7.3	12
35	Surveillance of cell wall diffusion barrier integrity modulates water and solute transport in plants. Scientific Reports, 2019, 9, 4227.	3.3	60
36	Regulatory Diversification of INDEHISCENT in the Capsella Genus Directs Variation in Fruit Morphology. Current Biology, 2019, 29, 1038-1046.e4.	3.9	12

#	Article	IF	CITATIONS
37	Selective auxin agonists induce specific AUX/IAA protein degradation to modulate plant development. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6463-6472.	7.1	23
38	Autoregulation of RCO by Low-Affinity Binding Modulates Cytokinin Action and Shapes Leaf Diversity. Current Biology, 2019, 29, 4183-4192.e6.	3.9	21
39	HISTONE DEACETYLASE 9 stimulates auxin-dependent thermomorphogenesis in <i>Arabidopsis thaliana</i> by mediating H2A.Z depletion. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25343-25354.	7.1	91
40	A bacterial assay for rapid screening of IAA catabolic enzymes. Plant Methods, 2019, 15, 126.	4.3	13
41	Tissueâ€specific hormone profiles from woody poplar roots under bending stress. Physiologia Plantarum, 2019, 165, 101-113.	5.2	14
42	Auxin Function in the Brown Alga <i>Dictyota dichotoma</i> . Plant Physiology, 2019, 179, 280-299.	4.8	24
43	Ultra-rapid auxin metabolite profiling for high-throughput mutant screening in Arabidopsis. Journal of Experimental Botany, 2018, 69, 2569-2579.	4.8	60
44	Circadian clock components control daily growth activities by modulating cytokinin levels and cell divisionâ€associated gene expression in <i>Populus</i> trees. Plant, Cell and Environment, 2018, 41, 1468-1482.	5.7	22
45	A mechanistic framework for auxin dependent Arabidopsis root hair elongation to low external phosphate. Nature Communications, 2018, 9, 1409.	12.8	146
46	Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate. Nature Communications, 2018, 9, 1408.	12.8	110
47	Transcriptional stimulation of rate-limiting components of the autophagic pathway improves plant fitness. Journal of Experimental Botany, 2018, 69, 1415-1432.	4.8	120
48	Plant Hormonomics: Multiple Phytohormone Profiling by Targeted Metabolomics. Plant Physiology, 2018, 177, 476-489.	4.8	293
49	Combined transcriptome and translatome analyses reveal a role for tryptophanâ€dependent auxin biosynthesis in the control of <i>DOG1</i> â€dependent seed dormancy. New Phytologist, 2018, 217, 1077-1085.	7.3	32
50	Broad spectrum developmental role of Brachypodium <scp>AUX</scp> 1. New Phytologist, 2018, 219, 1216-1223.	7.3	18
51	Zooming In on Plant Hormone Analysis: Tissue- and Cell-Specific Approaches. Annual Review of Plant Biology, 2017, 68, 323-348.	18.7	74
52	Regulating plant physiology with organic electronics. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4597-4602.	7.1	51
53	Altered expression of maize PLASTOCHRON1 enhances biomass and seed yield by extending cell division duration. Nature Communications, 2017, 8, 14752.	12.8	89
54	Contrasting patterns of cytokinins between years in senescing aspen leaves. Plant, Cell and Environment, 2017, 40, 622-634.	5.7	34

#	Article	IF	CITATIONS
55	Auxin minimum triggers the developmental switch from cell division to cell differentiation in the <i>Arabidopsis</i> root. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7641-E7649.	7.1	193
56	Type B Response Regulators Act As Central Integrators in Transcriptional Control of the Auxin Biosynthesis Enzyme TAA1. Plant Physiology, 2017, 175, 1438-1454.	4.8	43
57	Brassinosteroid signaling-dependent root responses to prolonged elevated ambient temperature. Nature Communications, 2017, 8, 309.	12.8	102
58	Enhanced Secondary- and Hormone Metabolism in Leaves of Arbuscular Mycorrhizal <i>Medicago truncatula</i> . Plant Physiology, 2017, 175, 392-411.	4.8	81
59	SHADE AVOIDANCE 4 Is Required for Proper Auxin Distribution in the Hypocotyl. Plant Physiology, 2017, 173, 788-800.	4.8	22
60	The Arabidopsis bZIP11 transcription factor links low-energy signalling to auxin-mediated control of primary root growth. PLoS Genetics, 2017, 13, e1006607.	3.5	115
61	High-Resolution Cell-Type Specific Analysis of Cytokinins in Sorted Root Cell Populations of Arabidopsis thaliana. Methods in Molecular Biology, 2017, 1497, 231-248.	0.9	4
62	The epidermis coordinates auxin-induced stem growth in response to shade. Genes and Development, 2016, 30, 1529-1541.	5.9	99
63	The PLETHORA Gene Regulatory Network Guides Growth and Cell Differentiation in Arabidopsis Roots. Plant Cell, 2016, 28, 2937-2951.	6.6	127
64	The Effects of High Steady State Auxin Levels on Root Cell Elongation in Brachypodium. Plant Cell, 2016, 28, 1009-1024.	6.6	65
65	Dioxygenase-encoding <i>AtDAO1</i> gene controls IAA oxidation and homeostasis in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11016-11021.	7.1	162
66	Local auxin metabolism regulates environment-induced hypocotyl elongation. Nature Plants, 2016, 2, 16025.	9.3	122
67	Dynamic regulation of auxin oxidase and conjugating enzymes <i>AtDAO1</i> and <i>GH3</i> modulates auxin homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11022-11027.	7.1	119
68	Quantitative Auxin Metabolite Profiling Using Stable Isotope Dilution UHPLCâ€MS/MS. Current Protocols in Plant Biology, 2016, 1, 419-430.	2.8	6
69	Cryptochromes Interact Directly with PIFs to Control Plant Growth in Limiting Blue Light. Cell, 2016, 164, 233-245.	28.9	445
70	Connective Auxin Transport in the Shoot Facilitates Communication between Shoot Apices. PLoS Biology, 2016, 14, e1002446.	5.6	133
71	Contrasting growth responses in lamina and petiole during neighbor detection depend on differential auxin responsiveness rather than different auxin levels. New Phytologist, 2015, 208, 198-209.	7.3	100
72	New mechanistic links between sugar and hormone signalling networks. Current Opinion in Plant Biology, 2015, 25, 130-137.	7.1	179

#	Article	IF	CITATIONS
73	An Intrinsic MicroRNA Timer Regulates Progressive Decline in Shoot Regenerative Capacity in Plants. Plant Cell, 2015, 27, 349-360.	6.6	128
74	Cell-Type-Specific Cytokinin Distribution within the Arabidopsis Primary Root Apex. Plant Cell, 2015, 27, 1955-1967.	6.6	143
75	The circadian clock rephases during lateral root organ initiation in Arabidopsis thaliana. Nature Communications, 2015, 6, 7641.	12.8	119
76	Development of the Poplar <i>-Laccaria bicolor</i> Ectomycorrhiza Modifies Root Auxin Metabolism, Signaling, and Response. Plant Physiology, 2015, 169, 890-902.	4.8	70
77	Cell-type specific metabolic profiling of Arabidopsis thaliana protoplasts as a tool for plant systems biology. Metabolomics, 2015, 11, 1679-1689.	3.0	23
78	Modelling of Arabidopsis LAX3 expression suggests auxin homeostasis. Journal of Theoretical Biology, 2015, 366, 57-70.	1.7	12
79	Three ancient hormonal cues co-ordinate shoot branching in a moss. ELife, 2015, 4, .	6.0	84
80	Auxin and Strigolactone Signaling Are Required for Modulation of Arabidopsis Shoot Branching by Nitrogen Supply Â. Plant Physiology, 2014, 166, 384-395.	4.8	112
81	Cotyledon-Generated Auxin Is Required for Shade-Induced Hypocotyl Growth in <i>Brassica rapa</i> Â Â Â Â. Plant Physiology, 2014, 165, 1285-1301.	4.8	128
82	ADP1 Affects Plant Architecture by Regulating Local Auxin Biosynthesis. PLoS Genetics, 2014, 10, e1003954.	3.5	47
83	Directional Auxin Transport Mechanisms in Early Diverging Land Plants. Current Biology, 2014, 24, 2786-2791.	3.9	113
84	Root gravitropism and root hair development constitute coupled developmental responses regulated by auxin homeostasis in the <i>Arabidopsis</i> root apex. New Phytologist, 2013, 197, 1130-1141.	7.3	115
85	Auxin metabolism and homeostasis during plant development. Development (Cambridge), 2013, 140, 943-950.	2.5	474
86	Auxin and cytokinin regulate each other's levels via a metabolic feedback loop. Plant Signaling and Behavior, 2011, 6, 901-904.	2.4	30
87	Quantification of indole-3-acetic acid from plant associated Bacillus spp. and their phytostimulatory effect on Vigna radiata (L.). World Journal of Microbiology and Biotechnology, 2009, 25, 519-526.	3.6	56
88	The AUXIN BINDING PROTEIN 1 Is Required for Differential Auxin Responses Mediating Root Growth. PLoS ONE, 2009, 4, e6648.	2.5	124
89	Inhibited polar auxin transport results in aberrant embryo development in Norway spruce. New Phytologist, 2008, 177, 356-366.	7.3	69
90	Inheritance pattern of five monoterpenes in Scots pine (Pinus sylvestris L.). Hereditas, 2008, 97, 261-272.	1.4	3

#	Article	IF	CITATIONS
91	Requirement of B2-Type <i>Cyclin-Dependent Kinases</i> for Meristem Integrity in <i>Arabidopsis thaliana</i> . Plant Cell, 2008, 20, 88-100.	6.6	181
92	Vectorial Information for Arabidopsis Planar Polarity Is Mediated by Combined AUX1, EIN2, and GNOM Activity. Current Biology, 2006, 16, 2143-2149.	3.9	141
93	Sites and Regulation of Auxin Biosynthesis in Arabidopsis Roots. Plant Cell, 2005, 17, 1090-1104.	6.6	466
94	Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant Journal, 2002, 28, 465-474.	5.7	531
95	Title is missing!. Plant Molecular Biology, 2002, 49, 249-272.	3.9	145
96	Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. Plant Molecular Biology, 2002, 50, 309-332.	3.9	191
97	Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. Plant Molecular Biology, 2002, 49, 249-72.	3.9	70
98	Developmental Regulation of Indole-3-Acetic Acid Turnover in Scots Pine Seedlings. Plant Physiology, 2001, 125, 464-475.	4.8	99