KateÅina Biåjovã;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8137170/publications.pdf

Version: 2024-02-01

62 papers

4,780 citations

236925 25 h-index 57 g-index

68 all docs 68
docs citations

68 times ranked 6022 citing authors

#	Article	IF	CITATIONS
1	Assaying Cyclin-Dependent Kinase Activity in Synchronized Algal Cultures. Methods in Molecular Biology, 2022, 2382, 73-88.	0.9	1
2	Analysis of Commitment Point Attainment in Algae Dividing by Multiple Fission. Methods in Molecular Biology, 2022, 2382, 89-101.	0.9	2
3	Improving microalgae for biotechnology â€" From genetics to synthetic biology â€" Moving forward but not there yet. Biotechnology Advances, 2022, 58, 107885.	11.7	20
4	The Effect of Variable Light Source and Light Intensity on the Growth of Three Algal Species. Cells, 2022, 11, 1293.	4.1	20
5	Comparing Biochemical and Raman Microscopy Analyses of Starch, Lipids, Polyphosphate, and Guanine Pools during the Cell Cycle of Desmodesmus quadricauda. Cells, 2021, 10, 62.	4.1	11
6	A tribute to Vilém Zachleder (1944–2020). Journal of Experimental Botany, 2021, 72, 2273-2274.	4.8	0
7	Exploring Mycosporine-Like Amino Acids (MAAs) as Safe and Natural Protective Agents against UV-Induced Skin Damage. Antioxidants, 2021, 10, 683.	5.1	29
8	Starch Production in Chlamydomonas reinhardtii through Supraoptimal Temperature in a Pilot-Scale Photobioreactor. Cells, 2021, 10, 1084.	4.1	15
9	Growth under Different Trophic Regimes and Synchronization of the Red Microalga Galdieria sulphuraria. Biomolecules, 2021, 11, 939.	4.0	9
10	To Divide or Not to Divide? How Deuterium Affects Growth and Division of Chlamydomonas reinhardtii. Biomolecules, 2021, 11, 861.	4.0	2
11	Characterization of Growth and Cell Cycle Events Affected by Light Intensity in the Green Alga Parachlorella kessleri: A New Model for Cell Cycle Research. Biomolecules, 2021, 11, 891.	4.0	10
12	Supra-Optimal Temperature: An Efficient Approach for Overaccumulation of Starch in the Green Alga Parachlorella kessleri. Cells, 2021, 10, 1806.	4.1	9
13	Diclofenac Alters the Cell Cycle Progression of the Green Alga Chlamydomonas reinhardtii. Cells, 2021, 10, 1936.	4.1	4
14	The biosynthesis of phospholipids is linked to the cell cycle in a model eukaryote. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 158965.	2.4	4
15	Distribution of cycle threshold values in RT-qPCR tests during the autumn 2020 peak of the COVID-19 pandemic in the Czech Republic. Access Microbiology, 2021, 3, 000263.	0.5	O
16	Response of the Green Alga Chlamydomonas reinhardtii to the DNA Damaging Agent Zeocin. Cells, 2019, 8, 735.	4.1	22
17	Deuterium and its impact on living organisms. Folia Microbiologica, 2019, 64, 673-681.	2.3	23
18	Growth and the cell cycle in green algae dividing by multiple fission. Folia Microbiologica, 2019, 64, 663-672.	2.3	11

#	Article	IF	CITATIONS
19	Cell Cycle Arrest by Supraoptimal Temperature in the Alga Chlamydomonas reinhardtii. Cells, 2019, 8, 1237.	4.1	23
20	Effects of cyclin-dependent kinase activity on the coordination of growth and the cell cycle in green algae at different temperatures. Journal of Experimental Botany, 2019, 70, 845-858.	4.8	18
21	Bio-mining of Lanthanides from Red Mud by Green Microalgae. Molecules, 2019, 24, 1356.	3.8	24
22	Early Evolution of the Mitogen-Activated Protein Kinase Family in the Plant Kingdom. Scientific Reports, 2019, 9, 4094.	3.3	10
23	The <i>Parachlorella</i> Genome and Transcriptome Endorse Active RWP-RK, Meiosis and Flagellar Genes in Trebouxiophycean Algae. Cytologia, 2019, 84, 323-330.	0.6	6
24	Stable isotope compounds - production, detection, and application. Biotechnology Advances, 2018, 36, 784-797.	11.7	41
25	Selective bioaccumulation of rubidium by microalgae from industrial wastewater containing rubidium and lithium. Journal of Applied Phycology, 2018, 30, 461-467.	2.8	5
26	Comparison of lipid productivity of Parachlorella kessleri heavy-ion beam irradiation mutant PK4 in laboratory and 150-L mass bioreactor, identification and characterization of its genetic variation. Algal Research, 2018, 35, 416-426.	4.6	27
27	The effect of lanthanides on photosynthesis, growth, and chlorophyll profile of the green alga Desmodesmus quadricauda. Photosynthesis Research, 2016, 130, 335-346.	2.9	32
28	Deciphering the relationship among phosphate dynamics, electron-dense body and lipid accumulation in the green alga Parachlorella kessleri. Scientific Reports, 2016, 6, 25731.	3.3	53
29	Highly efficient lipid production in the green alga Parachlorella kessleri: draft genome and transcriptome endorsed by whole-cell 3D ultrastructure. Biotechnology for Biofuels, 2016, 9, 13.	6.2	56
30	The Cell Cycle of Microalgae., 2016,, 3-46.		19
31	Synchronization of Green Algae by Light and Dark Regimes for Cell Cycle and Cell Division Studies. Methods in Molecular Biology, 2016, 1370, 3-16.	0.9	18
32	Improving microalgae for biotechnology â€" From genetics to synthetic biology. Biotechnology Advances, 2015, 33, 1194-1203.	11.7	106
33	Evidences of oxidative stress during hydrogen photoproduction in sulfur-deprived cultures of Chlamydomonas reinhardtii. International Journal of Hydrogen Energy, 2015, 40, 10410-10417.	7.1	11
34	Use of lanthanides to alleviate the effects of metal ion-deficiency in Desmodesmus quadricauda (Sphaeropleales, Chlorophyta). Frontiers in Microbiology, 2015, 6, 2.	3.5	59
35	Accumulation of energy reserves in algae: From cell cycles to biotechnological applications. Biotechnology Advances, 2015, 33, 1204-1218.	11.7	190
36	Beneficial or Toxic Effects of Selenium on Green Algae and Their Application as Nutrient Supplements or Bio-remediators., 2015,, 315-338.		3

#	Article	IF	CITATIONS
37	Cell-cycle regulation in green algae dividing by multiple fission. Journal of Experimental Botany, 2014, 65, 2585-2602.	4.8	139
38	CYCP2;1 integrates genetic and nutritional information to promote meristem cell division in Arabidopsis. Developmental Biology, 2014, 393, 160-170.	2.0	25
39	The microalga <i>Parachlorella kessleri</i> ––A novel highly efficient lipid producer. Biotechnology and Bioengineering, 2013, 110, 97-107.	3.3	102
40	Completion of cell division is associated with maximum telomerase activity in naturally synchronized cultures of the green alga <i>Desmodesmus quadricauda</i> . FEBS Letters, 2013, 587, 743-748.	2.8	8
41	Relationship between starch and lipid accumulation induced by nutrient depletion and replenishment in the microalga Parachlorella kessleri. Bioresource Technology, 2013, 144, 268-274.	9.6	114
42	Glutathione peroxidase activity in the selenium-treated alga Scenedesmus quadricauda. Aquatic Toxicology, 2011, 102, 87-94.	4.0	63
43	Chlamydomonas reinhardtii: duration of its cell cycle and phases at growth rates affected by light intensity. Planta, 2011, 233, 75-86.	3.2	65
44	Chlamydomonas reinhardtii: duration of its cell cycle and phases at growth rates affected by temperature. Planta, 2011, 234, 599-608.	3.2	59
45	Microalgaeâ€"novel highly efficient starch producers. Biotechnology and Bioengineering, 2011, 108, 766-776.	3.3	380
46	DNA Damage during G2 Phase Does Not Affect Cell Cycle Progression of the Green Alga Scenedesmus quadricauda. PLoS ONE, 2011, 6, e19626.	2.5	16
47	Regulation of the <i>Chlamydomonas </i> Cell Cycle by a Stable, Chromatin-Associated Retinoblastoma Tumor Suppressor Complex. Plant Cell, 2010, 22, 3331-3347.	6.6	67
48	Bioaccumulation and toxicity of selenium compounds in the green alga Scenedesmus quadricauda. BMC Plant Biology, 2009, 9, 58.	3.6	83
49	CDKA and CDKB kinases from Chlamydomonas reinhardtii are able to complement cdc28 temperature-sensitive mutants of Saccharomyces cerevisiae. Protoplasma, 2008, 232, 183-191.	2.1	12
50	Cell Growth Control in an Algal Model. , 2008, , 351-373.		0
51	Accumulation, Activity and Localization of Cell Cycle Regulatory Proteins and the Chloroplast Division Protein FtsZ in the Alga Scenedesmus quadricauda under Inhibition of Nuclear DNA Replication. Plant and Cell Physiology, 2008, 49, 1805-1817.	3.1	10
52	The <i>Chlamydomonas</i> Genome Reveals the Evolution of Key Animal and Plant Functions. Science, 2007, 318, 245-250.	12.6	2,354
53	Diverse phosphoregulatory mechanisms controlling cyclin-dependent kinase-activating kinases in Arabidopsis. Plant Journal, 2006, 47, 701-710x.	5.7	54
54	Genome-Wide Annotation and Expression Profiling of Cell Cycle Regulatory Genes in Chlamydomonas reinhardtii. Plant Physiology, 2005, 137, 475-491.	4.8	131

#	ARTICLE	IF	CITATION
55	The Plant-Specific Kinase CDKF;1 Is Involved in Activating Phosphorylation of Cyclin-Dependent Kinase-Activating Kinases in Arabidopsis. Plant Cell, 2004, 16, 2954-2966.	6.6	70
56	Effect of red and blue light on the timing of cyclin-dependent kinase activity and the timing of cell division in Chlamydomonas reinhardtii. Plant Physiology and Biochemistry, 2004, 42, 341-348.	5.8	41
57	Cell growth and division processes are differentially sensitive to cadmium inScenedesmus quadricauda. Folia Microbiologica, 2003, 48, 805-816.	2.3	24
58	The alga Chlamydomonas reinhardtii UVS11 gene is responsible for cell division delay and temporal decrease in histone H1 kinase activity caused by UV irradiation. DNA Repair, 2003, 2, 737-750.	2.8	10
59	Variety of cell cycle patterns in the alga Scenedesmus quadricauda (Chlorophyta) as revealed by application of illumination regimes and inhibitors. European Journal of Phycology, 2002, 37, 361-371.	2.0	37
60	Factors affecting the mating competence in the unicellular green algaChlamydomonas eugametos (Volvocales). Folia Microbiologica, 2002, 47, 69-72.	2.3	2
61	Plectin-like proteins are present in cells of Chlamydomonas eugametos (Volvocales). Folia Microbiologica, 2002, 47, 535-539.	2.3	1
62	The activity of total histone H1 kinases is related to growth and commitment points while the p13suc1-bound kinase activity relates to mitoses in the alga Scenedesmus quadricauda. Plant Physiology and Biochemistry, 2000, 38, 755-764.	5.8	20