Connie C W Hsia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8136203/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An Official Research Policy Statement of the American Thoracic Society/European Respiratory Society: Standards for Quantitative Assessment of Lung Structure. American Journal of Respiratory and Critical Care Medicine, 2010, 181, 394-418.	5.6	760
2	Repair and Regeneration of the Respiratory System: Complexity, Plasticity, and Mechanisms of Lung Stem Cell Function. Cell Stem Cell, 2014, 15, 123-138.	11.1	748
3	Evolution of Air Breathing: Oxygen Homeostasis and the Transitions from Water to Land and Sky. , 2013, 3, 849-915.		249
4	Lung Structure and the Intrinsic Challenges of Gas Exchange. , 2016, 6, 827-895.		127
5	Polymeric nanoparticles for pulmonary protein and DNA delivery. Acta Biomaterialia, 2014, 10, 2643-2652.	8.3	125
6	Recruitment of Lung Diffusing Capacity. Chest, 2002, 122, 1774-1783.	0.8	120
7	Subclinical Lung Disease, Macrocytosis, and Premature Graying in Kindreds With Telomerase (TERT) Mutations. Chest, 2011, 140, 753-763.	0.8	97
8	α-Klotho protects against oxidative damage in pulmonary epithelia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 307, L566-L575.	2.9	97
9	Signals and mechanisms of compensatory lung growth. Journal of Applied Physiology, 2004, 97, 1992-1998.	2.5	96
10	Diminished Alveolar Microvascular Reserves in Type 2 Diabetes Reflect Systemic Microangiopathy. Diabetes Care, 2008, 31, 1596-1601.	8.6	95
11	Standardisation and application of the single-breath determination of nitric oxide uptake in the lung. European Respiratory Journal, 2017, 49, 1600962.	6.7	94
12	Compensatory alveolar growth normalizes gas-exchange function in immature dogs after pneumonectomy. Journal of Applied Physiology, 1999, 86, 1301-1310.	2.5	84
13	Update on the Features and Measurements of Experimental Acute Lung Injury in Animals: An Official American Thoracic Society Workshop Report. American Journal of Respiratory Cell and Molecular Biology, 2022, 66, e1-e14.	2.9	82
14	The diabetic lung: Relevance of alveolar microangiopathy for the use of inhaled insulin. American Journal of Medicine, 2005, 118, 205-211.	1.5	80
15	Fatty diabetic lung: altered alveolar structure and surfactant protein expression. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2010, 298, L392-L403.	2.9	76
16	Relationship between diabetes control and pulmonary function in insulin-dependent diabetes mellitus. American Journal of Medicine, 1991, 91, 371-376.	1.5	71
17	Nitric Oxide Diffusing Capacity and Alveolar Microvascular Recruitment in Sarcoidosis. American Journal of Respiratory and Critical Care Medicine, 2004, 169, 1034-1040.	5.6	68
18	Lung Function Changes Related to Diabetes Mellitus. Diabetes Technology and Therapeutics, 2007, 9, S-73-S-82.	4.4	57

#	Article	IF	CITATIONS
19	Nano-Therapeutics for the Lung: State-of-the-Art and Future Perspectives. Current Pharmaceutical Design, 2015, 21, 5233-5244.	1.9	52
20	Enhanced alveolar growth and remodeling in Guinea pigs raised at high altitude. Respiratory Physiology and Neurobiology, 2005, 147, 105-115.	1.6	49
21	Variation of lung volume after fixation when measured by immersion or Cavalieri method. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 284, L242-L245.	2.9	44
22	Expression of epidermal growth factor and surfactant proteins during postnatal and compensatory lung growth. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 283, L981-L990.	2.9	42
23	Regional lung growth following pneumonectomy assessed by computed tomography. Journal of Applied Physiology, 2004, 97, 1567-1574.	2.5	41
24	Residence at 3,800-m altitude for 5 mo in growing dogs enhances lung diffusing capacity for oxygen that persists at least 2.5 years. Journal of Applied Physiology, 2007, 102, 1448-1455.	2.5	40
25	Red cell distribution and the recruitment of pulmonary diffusing capacity. Journal of Applied Physiology, 1999, 86, 1460-1467.	2.5	37
26	Upregulation of erythropoietin receptor during postnatal and postpneumonectomy lung growth. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2004, 287, L1107-L1115.	2.9	36
27	Postpneumonectomy lung expansion elicits hypoxia-inducible factor-1α signaling. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 293, L497-L504.	2.9	36
28	Retinoic acid induces nonuniform alveolar septal growth after right pneumonectomy. Journal of Applied Physiology, 2004, 96, 1080-1089.	2.5	34
29	Dysanaptic growth of conducting airways after pneumonectomy assessed by CT scan. Journal of Applied Physiology, 2002, 93, 1235-1242.	2.5	31
30	Retinoic acid-induced alveolar cellular growth does not improve function after right pneumonectomy. Journal of Applied Physiology, 2004, 96, 1090-1096.	2.5	30
31	Regulated expression of hypoxia-inducible factors during postnatal and postpneumonectomy lung growth. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 290, L880-L889.	2.9	30
32	Separating in vivo mechanical stimuli for postpneumonectomy compensation: physiological assessment. Journal of Applied Physiology, 2013, 114, 99-106.	2.5	30
33	αKlotho deficiency in acute kidney injury contributes to lung damage. Journal of Applied Physiology, 2016, 120, 723-732.	2.5	30
34	Nanoparticle facilitated inhalational delivery of erythropoietin receptor cDNA protects against hyperoxic lung injury. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 811-821.	3.3	29
35	Postpneumonectomy alveolar growth does not normalize hemodynamic and mechanical function. Journal of Applied Physiology, 1999, 87, 491-497.	2.5	28
36	Long-term enhancement of pulmonary gas exchange after high-altitude residence during maturation. Journal of Applied Physiology, 2006, 100, 474-481.	2.5	28

#	Article	IF	CITATIONS
37	Noninvasive quantification of heterogeneous lung growth following extensive lung resection by high-resolution computed tomography. Journal of Applied Physiology, 2009, 107, 1569-1578.	2.5	28
38	Reducing lung strain after pneumonectomy impairs oxygen diffusing capacity but not ventilation-perfusion matching. Journal of Applied Physiology, 2003, 95, 1370-1378.	2.5	26
39	Comparative analysis of the mechanical signals in lung development and compensatory growth. Cell and Tissue Research, 2017, 367, 687-705.	2.9	26
40	Separating in vivo mechanical stimuli for postpneumonectomy compensation: imaging and ultrastructural assessment. Journal of Applied Physiology, 2013, 114, 961-970.	2.5	25
41	Further examination of alveolar septal adaptation to left pneumonectomy in the adult lung. Respiratory Physiology and Neurobiology, 2006, 151, 167-177.	1.6	24
42	Synergistic upregulation of erythropoietin receptor (EPO-R) expression by sense and antisense EPO-R transcripts in the canine lung. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7612-7617.	7.1	24
43	Acute lung injury complicating acute kidney injury: A model of endogenous αKlotho deficiency and distant organ dysfunction. Bone, 2017, 100, 100-109.	2.9	24
44	Permanent alveolar remodeling in canine lung induced by high-altitude residence during maturation. Journal of Applied Physiology, 2009, 107, 1911-1917.	2.5	23
45	Progressive adaptation in regional parenchyma mechanics following extensive lung resection assessed by functional computed tomography. Journal of Applied Physiology, 2011, 111, 1150-1158.	2.5	23
46	Alveolar diffusion-perfusion interactions during high-altitude residence in guinea pigs. Journal of Applied Physiology, 2007, 102, 2179-2185.	2.5	22
47	Developmental signals do not further accentuate nonuniform postpneumonectomy compensatory lung growth. Journal of Applied Physiology, 2007, 102, 1170-1177.	2.5	19
48	Shifting sources of functional limitation following extensive (70%) lung resection. Journal of Applied Physiology, 2008, 104, 1069-1079.	2.5	19
49	Alpha-Klotho Enrichment in Induced Pluripotent Stem Cell Secretome Contributes to Antioxidative Protection in Acute Lung Injury. Stem Cells, 2018, 36, 616-625.	3.2	19
50	The canine spleen in oxygen transport: gas exchange and hemodynamic responses to splenectomy. Journal of Applied Physiology, 2007, 103, 1496-1505.	2.5	18
51	Deconvoluting lung evolution: from phenotypes to gene regulatory networks. Integrative and Comparative Biology, 2007, 47, 601-609.	2.0	18
52	Defining a stimuli-response relationship in compensatory lung growth following major resection. Journal of Applied Physiology, 2014, 116, 816-824.	2.5	18
53	Lack of response to all-trans retinoic acid supplementation in adult dogs following left pneumonectomy. Journal of Applied Physiology, 2005, 99, 1681-1688.	2.5	17
54	Lessons from a Canine Model of Compensatory Lung Growth. Current Topics in Developmental Biology, 2004, 64, 17-32.	2.2	16

#	Article	IF	CITATIONS
55	Long-term post-pneumonectomy pulmonary adaptation following all-trans-retinoic acid supplementation. Journal of Applied Physiology, 2011, 110, 764-773.	2.5	16
56	Density-dependent reduction of nitric oxide diffusing capacity after pneumonectomy. Journal of Applied Physiology, 2003, 94, 1926-1932.	2.5	15
57	Vitamin-D status and mineral metabolism in two ethnic populations with sarcoidosis. Journal of Investigative Medicine, 2016, 64, 1025-1034.	1.6	15
58	Lung protection by inhalation of exogenous solubilized extracellular matrix. PLoS ONE, 2017, 12, e0171165.	2.5	14
59	Predicting diffusive alveolar oxygen transfer from carbon monoxide-diffusing capacity in exercising foxhounds. Journal of Applied Physiology, 2008, 105, 1441-1447.	2.5	13
60	Fatty diabetic lung: functional impairment in a model of metabolic syndrome. Journal of Applied Physiology, 2010, 109, 1913-1919.	2.5	11
61	Alphaâ€Klotho, a critical protein for lung health, is not expressed in normal lung. FASEB BioAdvances, 2019, 1, 675-687.	2.4	10
62	What can imaging tell us about physiology? Lung growth and regional mechanical strain. Journal of Applied Physiology, 2012, 113, 937-946.	2.5	9
63	A rebreathing method for measuring lung volume, diffusing capacity and cardiac output in conscious small animals. Respiratory Physiology and Neurobiology, 2005, 146, 215-223.	1.6	8
64	Quantifying Heterogeneity in Emphysema from High-Resolution Computed Tomography. Academic Radiology, 2013, 20, 181-193.	2.5	8
65	Perfusion-related stimuli for compensatory lung growth following pneumonectomy. Journal of Applied Physiology, 2016, 121, 312-323.	2.5	8
66	Erythropoietin inhalation enhances adult canine alveolar-capillary formation following pneumonectomy. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 316, L936-L945.	2.9	8
67	Inhalational delivery of induced pluripotent stem cell secretome improves postpneumonectomy lung structure and function. Journal of Applied Physiology, 2020, 129, 1051-1061.	2.5	7
68	Lung diffusing capacity for nitric oxide measured by two commercial devices: a randomised crossover comparison in healthy adults. ERJ Open Research, 2021, 7, 00193-2021.	2.6	6
69	Adaptation of respiratory muscle perfusion during exercise to chronically elevated ventilatory work. Journal of Applied Physiology, 2000, 89, 1725-1736.	2.5	5
70	Assessing recruitment of lung diffusing capacity in exercising guinea pigs with a rebreathing technique. Journal of Applied Physiology, 2008, 105, 316-321.	2.5	5
71	Persistent structural adaptation in the lungs of guinea pigs raised at high altitude. Respiratory Physiology and Neurobiology, 2015, 208, 37-44.	1.6	4
72	Role of Mechanical Stress in Lung Repair and Regeneration. Pancreatic Islet Biology, 2015, , 191-210.	0.3	4

#	Article	IF	CITATIONS
73	Constitutive transgenic α-Klotho overexpression enhances resilience to and recovery from murine acute lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 321, L736-L749.	2.9	3
74	In vivo imaging of canine lung deformation: effects of posture, pneumonectomy, and inhaled erythropoietin. Journal of Applied Physiology, 2020, 128, 1093-1105.	2.5	3
75	Noninvasive assessment of alveolar microvascular recruitment in conscious non-sedated rats. Respiratory Physiology and Neurobiology, 2014, 190, 105-112.	1.6	2
76	Simulation System for a Rebreathing Technique To Measure Multiple Cardiopulmonary Function Parameters. Chest, 2009, 135, 1309-1314.	0.8	1
77	Alveolo-capillary diffusion of hyperpolarized 129Xe as a marker of pulmonary fibrosis. Journal of Applied Physiology, 2014, 117, 573-574.	2.5	1
78	Drowning in a river with an average depth of 3 ft: interpreting athletic performance gains. Journal of Applied Physiology, 2017, 123, 1256-1257.	2.5	1
79	Acclimatization of low altitude-bred deer mice (Peromyscus maniculatus) to high altitude. Journal of Applied Physiology, 2018, 125, 1411-1423.	2.5	1
80	Call for Papers: "Morphology is the link between genetics and function― a tribute to Ewald R. Weibel. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 320, L254-L256.	2.9	1
81	Respiratory Function of Hemoglobin: From Origin to Human Physiology and Pathophysiology. , 2021, , 635-651.		0