Bruno Sicardy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8136176/publications.pdf

Version: 2024-02-01

201674 175258 2,934 63 27 52 h-index citations g-index papers 76 76 76 1593 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Neptune's ring arcs from VLT/SPHERE-IRDIS near-infrared observations. Astronomy and Astrophysics, 2022, 657, A134.	5.1	2
2	SORA: Stellar occultation reduction and analysis. Monthly Notices of the Royal Astronomical Society, 2022, 511, 1167-1181.	4.4	17
3	Constraints on the structure and seasonal variations of Triton's atmosphere from the 5 October 2017 stellar occultation and previous observations. Astronomy and Astrophysics, 2022, 659, A136.	5.1	8
4	Milliarcsecond Astrometry for the Galilean Moons Using Stellar Occultations. Astronomical Journal, 2022, 163, 240.	4.7	7
5	Refined physical parameters for Chariklo's body and rings from stellar occultations observed between 2013 and 2020. Astronomy and Astrophysics, 2021, 652, A141.	5.1	17
6	The 2017 May 20 stellar occultation by the elongated centaur (95626) 2002 GZ32. Monthly Notices of the Royal Astronomical Society, 2021, 501, 6062-6075.	4.4	3
7	Pluto's Atmosphere in Plateau Phase Since 2015 from a Stellar Occultation at Devasthal. Astrophysical Journal Letters, 2021, 923, L31.	8.3	8
8	The dynamics of rings around Centaurs and Trans-Neptunian objects. , 2020, , 249-269.		6
9	Stellar occultations by Trans-Neptunian objects: From predictions to observations and prospects for the future., 2020,, 413-437.		14
10	The large trans-Neptunian object 2002 TC ₃₀₂ from combined stellar occultation, photometry, and astrometry data. Astronomy and Astrophysics, 2020, 639, A134.	5.1	13
11	Resonances in Nonaxisymmetric Gravitational Potentials. Astronomical Journal, 2020, 159, 102.	4.7	6
12	A Single-chord Stellar Occultation by the Extreme Trans-Neptunian Object (541132) LeleÄkÅ«honua. Astronomical Journal, 2020, 159, 230.	4.7	7
13	The first observed stellar occultations by the irregular satellite Phoebe (Saturn IX) and improved rotational period. Monthly Notices of the Royal Astronomical Society, 2020, 492, 770-781.	4.4	6
14	A multi-chord stellar occultation by the large trans-Neptunian object (174567) Varda. Astronomy and Astrophysics, 2020, 643, A125.	5.1	17
15	Stellar occultations enable milliarcsecond astrometry for Trans-Neptunian objects and Centaurs. Astronomy and Astrophysics, 2020, 644, A40.	5.1	11
16	The Trans-Neptunian Object (84922) 2003 VS ₂ through Stellar Occultations. Astronomical Journal, 2019, 158, 159.	4.7	10
17	Pluto's ephemeris from ground-based stellar occultations (1988–2016). Astronomy and Astrophysics, 2019, 625, A43.	5.1	14
18	The dynamics of the outer edge of Saturn's A ring perturbed by the satellites Janus and Epimetheus. Monthly Notices of the Royal Astronomical Society, 2019, 486, 5037-5045.	4.4	1

#	Article	IF	CITATIONS
19	Database on detected stellar occultations by small outer Solar System objects. Journal of Physics: Conference Series, 2019, 1365, 012024.	0.4	7
20	Ring dynamics around non-axisymmetric bodies with application to Chariklo and Haumea. Nature Astronomy, 2019, 3, 146-153.	10.1	26
21	Lower atmosphere and pressure evolution on Pluto from ground-based stellar occultations, 1988–2016. Astronomy and Astrophysics, 2019, 625, A42.	5.1	29
22	The future of stellar occultations by distant solar system bodies: Perspectives from the Gaia astrometry and the deep sky surveys. Planetary and Space Science, 2018, 154, 59-62.	1.7	9
23	Study of the Plutino Object (208996) 2003 AZ ₈₄ from Stellar Occultations: Size, Shape, and Topographic Features. Astronomical Journal, 2017, 154, 22.	4.7	31
24	The size, shape, density and ring of the dwarf planet Haumea from a stellar occultation. Nature, 2017, 550, 219-223.	27.8	179
25	The Structure of Chariklo's Rings from Stellar Occultations. Astronomical Journal, 2017, 154, 144.	4.7	52
26	Size and Shape of Chariklo from Multi-epoch Stellar Occultations [*] . Astronomical Journal, 2017, 154, 159.	4.7	34
27	The thermal emission of Centaurs and trans-Neptunian objects at millimeter wavelengths from ALMA observations. Astronomy and Astrophysics, 2017, 608, A45.	5.1	34
28	Derivation of capture probabilities for the corotation eccentric mean motion resonances. Monthly Notices of the Royal Astronomical Society, 2017, 469, 2380-2386.	4.4	3
29	RESULTS FROM THE 2014 NOVEMBER 15TH MULTI-CHORD STELLAR OCCULTATION BY THE TNO (229762) 2007 UK ₁₂₆ . Astronomical Journal, 2016, 152, 156.	4.7	30
30	ORIGIN OF THE CHAOTIC MOTION OF THE SATURNIAN SATELLITE ATLAS. Astronomical Journal, 2016, 151, 122.	4.7	3
31	THE OUTER SOLAR SYSTEM ORIGINS SURVEY. I. DESIGN AND FIRST-QUARTER DISCOVERIES. Astronomical Journal, 2016, 152, 70.	4.7	105
32	PLUTO'S ATMOSPHERE FROM THE 2015 JUNE 29 GROUND-BASED STELLAR OCCULTATION AT THE TIME OF T NEW HORIZONS FLYBY*. Astrophysical Journal Letters, 2016, 819, L38.	HE 8.3	82
33	Results of two multichord stellar occultations by dwarf planet (1) Ceres. Monthly Notices of the Royal Astronomical Society, 2015, 451, 2295-2302.	4.4	10
34	Orbit determination of trans-Neptunian objects and Centaurs for the prediction of stellar occultations. Astronomy and Astrophysics, 2015, 584, A96.	5.1	39
35	PLUTO's ATMOSPHERE FROM STELLAR OCCULTATIONS IN 2012 AND 2013. Astrophysical Journal, 2015, 811, 53.	4.5	55
36	Neptune's ring arcs: VLT/NACO near-infrared observations and a model to explain their stability. Astronomy and Astrophysics, 2014, 563, A133.	5.1	16

#	Article	lF	Citations
37	Photometric and spectroscopic evidence for a dense ring system around Centaur Chariklo. Astronomy and Astrophysics, 2014, 568, A79.	5.1	36
38	A ring system detected around the Centaur (10199) Chariklo. Nature, 2014, 508, 72-75.	27.8	230
39	Coupling between corotation and Lindblad resonances in the presence of secular precession rates. Celestial Mechanics and Dynamical Astronomy, 2014, 118, 235-252.	1.4	28
40	Stellar occultation by (119951) 2002 KX ₁₄ on April 26, 2012. Astronomy and Astrophysics, 2014, 571, A48.	5.1	18
41	An exploration of Pluto's environment through stellar occultations. Astronomy and Astrophysics, 2014, 561, A144.	5.1	13
42	Candidate stellar occultations by Centaurs and trans-Neptunian objects up to 2014. Astronomy and Astrophysics, 2014, 561, A37.	5.1	22
43	THE SIZE, SHAPE, ALBEDO, DENSITY, AND ATMOSPHERIC LIMIT OF TRANSNEPTUNIAN OBJECT (50000) QUAOAR FROM MULTI-CHORD STELLAR OCCULTATIONS. Astrophysical Journal, 2013, 773, 26.	4.5	79
44	Candidate stellar occultations by large trans-Neptunian objects up to 2015. Astronomy and Astrophysics, 2012, 541, A142.	5.1	27
45	Albedo and atmospheric constraints of dwarf planet Makemake from a stellar occultation. Nature, 2012, 491, 566-569.	27.8	95
46	A Pluto-like radius and a high albedo for the dwarf planet Eris from an occultation. Nature, 2011, 478, 493-496.	27.8	156
47	CONSTRAINTS ON CHARON'S ORBITAL ELEMENTS FROM THE DOUBLE STELLAR OCCULTATION OF 2008 JUNE 22. Astronomical Journal, 2011, 141, 67.	4.7	21
48	Precise predictions of stellar occultations by Pluto, Charon, Nix, and Hydra for 2008–2015. Astronomy and Astrophysics, 2010, 515, A32.	5.1	40
49	Titania's radius and an upper limit on its atmosphere from the September 8, 2001 stellar occultation. Icarus, 2009, 199, 458-476.	2.5	26
50	Use of the Geometric Elements in Numerical Simulations. Celestial Mechanics and Dynamical Astronomy, 2006, 94, 237-248.	1.4	49
51	Prometheus and Pandora: masses and orbital positions during the Cassini tour. Icarus, 2005, 174, 230-240.	2.5	24
52	Stationary Configurations for Co-orbital Satellites with Small Arbitrary Masses. Celestial Mechanics and Dynamical Astronomy, 2004, 88, 397-414.	1.4	29
53	Large changes in Pluto's atmosphere as revealed by recent stellar occultations. Nature, 2003, 424, 168-170.	27.8	120
54	Images of Neptune's ring arcs obtained by a ground-based telescope. Nature, 1999, 400, 731-733.	27.8	44

Bruno Sicardy

#	Article	IF	CITATIONS
55	The Dynamics of the Neptunian Adams Ring's Arcs. Icarus, 1996, 123, 129-167.	2.5	35
56	Numerical exploration of planetary arc dynamics. Icarus, 1991, 89, 197-219.	2.5	23
57	Voyager 2 at Neptune: Imaging Science Results. Science, 1989, 246, 1422-1449.	12.6	573
58	On the physics of resonant disk-satellite interaction. Icarus, 1987, 69, 157-175.	2.5	130
59	Stellar occultations by small bodies - Diffraction effects. Astronomical Journal, 1987, 93, 1549.	4.7	73
60	Occultation detection of a neptunian ring-like arc. Nature, 1986, 319, 636-640.	27.8	86
61	Occultation determination of Neptune's oblateness and stratospheric methane mixing ratio. Nature, 1986, 324, 227-231.	27.8	28
62	The Rings of Neptune., 0,, 112-124.		12
63	Rings Beyond the Giant Planets. , 0, , 135-154.		2