Zhefeng Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8135043/publications.pdf Version: 2024-02-01

ZHEFENC CUO

#	Article	IF	CITATIONS
1	Thioflavin T as an amyloid dye: fibril quantification, optimal concentration and effect on aggregation. Royal Society Open Science, 2017, 4, 160696.	2.4	475
2	Alzheimer's Aβ42 and Aβ40 peptides form interlaced amyloid fibrils. Journal of Neurochemistry, 2013, 126, 305-311.	3.9	175
3	Structural determinants of nitroxide motion in spin″abeled proteins: Solventâ€exposed sites in helix B of T4 lysozyme. Protein Science, 2008, 17, 228-239.	7.6	111
4	Structural determinants of nitroxide motion in spin-labeled proteins: Tertiary contact and solvent-inaccessible sites in helix G of T4 lysozyme. Protein Science, 2007, 16, 1069-1086.	7.6	101
5	Osmolyte perturbation reveals conformational equilibria in spinâ€labeled proteins. Protein Science, 2009, 18, 1637-1652.	7.6	99
6	Runaway domain swapping in amyloid-like fibrils of T7 endonuclease I. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8042-8047.	7.1	88
7	Structural Insights into Aβ42 Oligomers Using Site-directed Spin Labeling. Journal of Biological Chemistry, 2013, 288, 18673-18683.	3.4	70
8	Antiparallel Triple-strand Architecture for Prefibrillar Aβ42 Oligomers. Journal of Biological Chemistry, 2014, 289, 27300-27313.	3.4	60
9	A new structural model of Alzheimer's Aβ42 fibrils based on electron paramagnetic resonance data and Rosetta modeling. Journal of Structural Biology, 2016, 194, 61-67.	2.8	50
10	Crossâ€seeding between Aβ40 and Aβ42 in Alzheimer's disease. FEBS Letters, 2017, 591, 177-185.	2.8	42
11	Structural origin of polymorphism of Alzheimer's amyloid β-fibrils. Biochemical Journal, 2012, 447, 43-50.	3.7	31
12	Hierarchical Organization in the Amyloid Core of Yeast Prion Protein Ure2. Journal of Biological Chemistry, 2011, 286, 29691-29699.	3.4	29
13	Key residues for the oligomerization of Aβ42 protein in Alzheimer's disease. Biochemical and Biophysical Research Communications, 2011, 414, 512-516.	2.1	28
14	Key Residues for the Formation of A \hat{I}^2 42 Amyloid Fibrils. ACS Omega, 2018, 3, 8401-8407.	3.5	26
15	The structure of a fibrilâ€forming sequence, NNQQNY, in the context of a globular fold. Protein Science, 2008, 17, 1617-1623.	7.6	20
16	Quantitative analysis of spin exchange interactions to identify β strand and turn regions in Ure2 prion domain fibrils with site-directed spin labeling. Journal of Structural Biology, 2012, 180, 374-381.	2.8	17
17	Aβ42 fibril formation from predominantly oligomeric samples suggests a link between oligomer heterogeneity and fibril polymorphism. Royal Society Open Science, 2019, 6, 190179.	2.4	17
18	Alzheimer's Aβ42 and Aβ40 form mixed oligomers with direct molecular interactions. Biochemical and Biophysical Research Communications, 2021, 534, 292-296.	2.1	17

ZHEFENG GUO

#	Article	IF	CITATIONS
19	Solid-support Electron Paramagnetic Resonance (EPR) Studies of AÎ ² 40 Monomers Reveal a Structured State with Three Ordered Segments. Journal of Biological Chemistry, 2012, 287, 9081-9089.	3.4	15
20	Polymorphic Aβ42 fibrils adopt similar secondary structure but differ in cross-strand side chain stacking interactions within the same β-sheet. Scientific Reports, 2020, 10, 5720.	3.3	13
21	A mix-and-click method to measure amyloid-Î ² concentration with sub-micromolar sensitivity. Royal Society Open Science, 2017, 4, 170325.	2.4	11
22	Site-specific structural order in Alzheimer's Aβ42 fibrils. Royal Society Open Science, 2018, 5, 180166.	2.4	11
23	Prion Domain of Yeast Ure2 Protein Adopts a Completely Disordered Structure: A Solid-Support EPR Study. PLoS ONE, 2012, 7, e47248.	2.5	11
24	Distinguishing the Effect on the Rate and Yield of Aβ42 Aggregation by Green Tea Polyphenol EGCG. ACS Omega, 2020, 5, 21497-21505.	3.5	10
25	Spin Label Scanning Reveals Likely Locations of β-Strands in the Amyloid Fibrils of the Ure2 Prion Domain. ACS Omega, 2020, 5, 5984-5993.	3.5	10
26	Lipid membranes induce structural conversion from amyloid oligomers to fibrils. Biochemical and Biophysical Research Communications, 2021, 557, 122-126.	2.1	8
27	The Mechanism of the Amyloidogenic Conversion of T7 Endonuclease I. Journal of Biological Chemistry, 2007, 282, 14968-14974.	3.4	7
28	Amyloid hypothesis through the lens of $A\hat{l}^2$ supersaturation. Neural Regeneration Research, 2021, 16, 1562.	3.0	7
29	Segmental structural dynamics in Aβ42 globulomers. Biochemical and Biophysical Research Communications, 2021, 545, 119-124.	2.1	6
30	Effect of spin labelling on the aggregation kinetics of yeast prion protein Ure2. Royal Society Open Science, 2021, 8, 201747.	2.4	1
31	Static and dynamic disorder in AÎ ² 40 fibrils. Biochemical and Biophysical Research Communications, 2022, 610, 107-112.	2.1	1