
Valerie marie Weaver

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8134525/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tensional homeostasis and the malignant phenotype. Cancer Cell, 2005, 8, 241-254.	16.8	3,397
2	Matrix Crosslinking Forces Tumor Progression by Enhancing Integrin Signaling. Cell, 2009, 139, 891-906.	28.9	3,319
3	The extracellular matrix at a glance. Journal of Cell Science, 2010, 123, 4195-4200.	2.0	3,130
4	The extracellular matrix: A dynamic niche in cancer progression. Journal of Cell Biology, 2012, 196, 395-406.	5.2	2,547
5	A framework for advancing our understanding of cancer-associated fibroblasts. Nature Reviews Cancer, 2020, 20, 174-186.	28.4	2,012
6	Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cytoskeleton, 2005, 60, 24-34.	4.4	1,965
7	Depletion of Carcinoma-Associated Fibroblasts and Fibrosis Induces Immunosuppression and Accelerates Pancreas Cancer with Reduced Survival. Cancer Cell, 2014, 25, 719-734.	16.8	1,892
8	A tense situation: forcing tumour progression. Nature Reviews Cancer, 2009, 9, 108-122.	28.4	1,636
9	Extracellular Matrix Degradation and Remodeling in Development and Disease. Cold Spring Harbor Perspectives in Biology, 2011, 3, a005058-a005058.	5.5	1,597
10	The extracellular matrix modulates the hallmarks of cancer. EMBO Reports, 2014, 15, 1243-1253.	4.5	1,391
11	Extracellular matrix assembly: a multiscale deconstruction. Nature Reviews Molecular Cell Biology, 2014, 15, 771-785.	37.0	1,061
12	β4 integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium. Cancer Cell, 2002, 2, 205-216.	16.8	880
13	Balancing forces: architectural control of mechanotransduction. Nature Reviews Molecular Cell Biology, 2011, 12, 308-319.	37.0	817
14	Mechanics, malignancy, and metastasis: The force journey of a tumor cell. Cancer and Metastasis Reviews, 2009, 28, 113-127.	5.9	791
15	Dynamic interplay between the collagen scaffold and tumor evolution. Current Opinion in Cell Biology, 2010, 22, 697-706.	5.4	725
16	The cancer glycocalyx mechanically primes integrin-mediated growth and survival. Nature, 2014, 511, 319-325.	27.8	610
17	The organizing principle: microenvironmental influences in the normal and malignant breast. Differentiation, 2002, 70, 537-546.	1.9	542
18	Actomyosin-Mediated Cellular Tension Drives Increased Tissue Stiffness and β-Catenin Activation to Induce Epidermal Hyperplasia and Tumor Growth. Cancer Cell, 2011, 19, 776-791.	16.8	477

#	Article	IF	CITATIONS
19	Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression. Nature Medicine, 2016, 22, 497-505.	30.7	456
20	The Tension Mounts: Mechanics Meets Morphogenesis and Malignancy. Journal of Mammary Gland Biology and Neoplasia, 2004, 9, 325-342.	2.7	410
21	Tissue mechanics modulate microRNA-dependent PTEN expression to regulate malignant progression. Nature Medicine, 2014, 20, 360-367.	30.7	353
22	Controlled modelling of human epiblast and amnion development using stem cells. Nature, 2019, 573, 421-425.	27.8	338
23	The Extracellular Matrix Modulates the Metastatic Journey. Developmental Cell, 2019, 49, 332-346.	7.0	335
24	Fibrosis and cancer: A strained relationship. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1873, 188356.	7.4	327
25	Feeling Stress: The Mechanics of Cancer Progression and Aggression. Frontiers in Cell and Developmental Biology, 2018, 6, 17.	3.7	288
26	Three-dimensional context regulation of metastasis. Clinical and Experimental Metastasis, 2009, 26, 35-49.	3.3	285
27	Forcing form and function: biomechanical regulation of tumor evolution. Trends in Cell Biology, 2011, 21, 47-56.	7.9	270
28	Tissue mechanics promote IDH1-dependent HIF1α–tenascin C feedback to regulate glioblastomaÂaggression. Nature Cell Biology, 2016, 18, 1336-1345.	10.3	259
29	Mammary epithelial cell: Influence of extracellular matrix composition and organization during development and tumorigenesis. International Journal of Biochemistry and Cell Biology, 2007, 39, 1987-1994.	2.8	254
30	Tissue mechanics regulate brain development, homeostasis and disease. Journal of Cell Science, 2017, 130, 71-82.	2.0	243
31	<i>In situ</i> force mapping of mammary gland transformation. Integrative Biology (United Kingdom), 2011, 3, 910-921.	1.3	242
32	Visualizing dynamic microvillar search and stabilization during ligand detection by T cells. Science, 2017, 356, .	12.6	225
33	MT1-MMP-Dependent Control of Skeletal Stem Cell Commitment via a β1-Integrin/YAP/TAZ Signaling Axis. Developmental Cell, 2013, 25, 402-416.	7.0	219
34	Integrin Clustering Is Driven by Mechanical Resistance from the Glycocalyx and the Substrate. PLoS Computational Biology, 2009, 5, e1000604.	3.2	217
35	Force Matters: Biomechanical Regulation of Cell Invasion and Migration in Disease. Trends in Cell Biology, 2016, 26, 486-497.	7.9	195
36	Tissue Force Programs Cell Fate and Tumor Aggression. Cancer Discovery, 2017, 7, 1224-1237.	9.4	181

#	Article	IF	CITATIONS
37	The Physical and Biochemical Properties of the Extracellular Matrix Regulate Cell Fate. Current Topics in Developmental Biology, 2018, 130, 1-37.	2.2	179
38	Autocrine laminin-5 ligates α6β4 integrin and activates RAC and NFκB to mediate anchorage-independent survival of mammary tumors. Journal of Cell Biology, 2003, 163, 1397-1407.	5.2	174
39	Multiscale Modeling of Form and Function. Science, 2009, 324, 208-212.	12.6	172
40	Endonuclease Activities Associated with High Molecular Weight and Internucleosomal DNA Fragmentation in Apoptosis. Experimental Cell Research, 1994, 213, 100-106.	2.6	171
41	Force Engages Vinculin and Promotes Tumor Progression by Enhancing PI3K Activation of Phosphatidylinositol (3,4,5)-Triphosphate. Cancer Research, 2014, 74, 4597-4611.	0.9	168
42	Stromally Derived Lysyl Oxidase Promotes Metastasis of Transforming Growth Factor-β–Deficient Mouse Mammary Carcinomas. Cancer Research, 2013, 73, 5336-5346.	0.9	164
43	Targeting the cancer-associated fibroblasts as a treatment in triple-negative breast cancer. Oncotarget, 2016, 7, 82889-82901.	1.8	155
44	Death in the third dimension: apoptosis regulation and tissue architecture. Current Opinion in Genetics and Development, 2004, 14, 71-80.	3.3	149
45	Tumor microenvironment and progression. Journal of Surgical Oncology, 2011, 103, 468-474.	1.7	149
46	A physical sciences network characterization of non-tumorigenic and metastatic cells. Scientific Reports, 2013, 3, 1449.	3.3	146
47	A Human Breast Cell Model of Preinvasive to Invasive Transition. Cancer Research, 2008, 68, 1378-1387.	0.9	145
48	Tissue Mechanics Orchestrate Wnt-Dependent Human Embryonic Stem Cell Differentiation. Cell Stem Cell, 2016, 19, 462-475.	11.1	142
49	Rapid disorganization of mechanically interacting systems of mammary acini. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 658-663.	7.1	139
50	Physical and Chemical Gradients in the Tumor Microenvironment Regulate Tumor Cell Invasion, Migration, and Metastasis. Cold Spring Harbor Symposia on Quantitative Biology, 2016, 81, 189-205.	1.1	136
51	Metronomic chemotherapy prevents therapy-induced stromal activation and induction of tumor-initiating cells. Journal of Experimental Medicine, 2016, 213, 2967-2988.	8.5	135
52	Physiological ranges of matrix rigidity modulate primary mouse hepatocyte function in part through hepatocyte nuclear factor 4 alpha. Hepatology, 2016, 64, 261-275.	7.3	133
53	α6β4 integrin regulates keratinocyte chemotaxis through differential GTPase activation and antagonism of α3β1 integrin. Journal of Cell Science, 2003, 116, 3543-3556.	2.0	126
54	Microenvironment rigidity modulates responses to the HER2 receptor tyrosine kinase inhibitor lapatinib via YAP and TAZ transcription factors. Molecular Biology of the Cell, 2015, 26, 3946-3953.	2.1	126

#	Article	IF	CITATIONS
55	Hypoxia-inducible Factor Regulates αvβ3 Integrin Cell Surface Expression. Molecular Biology of the Cell, 2005, 16, 1901-1912.	2.1	124
56	From transformation to metastasis: deconstructing the extracellular matrix in breast cancer. Cancer and Metastasis Reviews, 2016, 35, 655-667.	5.9	123
57	The development of a functionally relevant cell culture model of progressive human breast cancer. Seminars in Cancer Biology, 1995, 6, 175-184.	9.6	119
58	Mechanical Control of Epithelial-to-Mesenchymal Transitions in Development and Cancer. Annual Review of Cell and Developmental Biology, 2016, 32, 527-554.	9.4	118
59	Lysyl Oxidase–like Protein LOXL2 Promotes Lung Metastasis of Breast Cancer. Cancer Research, 2017, 77, 5846-5859.	0.9	117
60	Wnt4 from the Niche Controls the Mechano-Properties and Quiescent State of Muscle Stem Cells. Cell Stem Cell, 2019, 25, 654-665.e4.	11.1	117
61	Modeling Morphogenesis and Oncogenesis in Three-Dimensional Breast Epithelial Cultures. Annual Review of Pathology: Mechanisms of Disease, 2008, 3, 313-339.	22.4	113
62	Integrin-mediated traction force enhances paxillin molecular associations and adhesion dynamics that increase the invasiveness of tumor cells into a three-dimensional extracellular matrix. Molecular Biology of the Cell, 2017, 28, 1467-1488.	2.1	110
63	Filamin A–β1 Integrin Complex Tunes Epithelial Cell Response to Matrix Tension. Molecular Biology of the Cell, 2009, 20, 3224-3238.	2.1	103
64	A tension-mediated glycocalyx–integrin feedback loop promotes mesenchymal-like glioblastoma. Nature Cell Biology, 2018, 20, 1203-1214.	10.3	103
65	Scanning angle interference microscopy reveals cell dynamics at the nanoscale. Nature Methods, 2012, 9, 825-827.	19.0	102
66	Extracellular Matrix Remodeling and Stiffening Modulate Tumor Phenotype and Treatment Response. Annual Review of Cancer Biology, 2017, 1, 313-334.	4.5	101
67	HOXA9 regulates BRCA1 expression to modulate human breast tumor phenotype. Journal of Clinical Investigation, 2010, 120, 1535-1550.	8.2	98
68	Tumor mechanics and metabolic dysfunction. Free Radical Biology and Medicine, 2015, 79, 269-280.	2.9	95
69	Collagen architecture in pregnancy-induced protection from breast cancer. Journal of Cell Science, 2013, 126, 4108-10.	2.0	87
70	Mechanical Tension Promotes Formation of Gastrulation-like Nodes and Patterns Mesoderm Specification in Human Embryonic Stem Cells. Developmental Cell, 2020, 55, 679-694.e11.	7.0	84
71	A 3D tension bioreactor platform to study the interplay between ECM stiffness and tumor phenotype. Journal of Biotechnology, 2015, 193, 66-69.	3.8	83
72	Structural cues from the tissue microenvironment are essential determinants of the human mammary epithelial cell phenotype. Journal of Mammary Gland Biology and Neoplasia, 1998, 3, 201-213.	2.7	82

#	Article	IF	CITATIONS
73	Effect of substrate stiffness and PDGF on the behavior of vascular smooth muscle cells: Implications for atherosclerosis. Journal of Cellular Physiology, 2010, 225, 115-122.	4.1	82
74	Pancreatic ductal adenocarcinoma progression is restrained by stromal matrix. Journal of Clinical Investigation, 2020, 130, 4704-4709.	8.2	80
75	α6β4 integrin activates Rac-dependent p21-activated kinase 1 to drive NF-κB-dependent resistance to apoptosis in 3D mammary acini. Journal of Cell Science, 2007, 120, 3700-3712.	2.0	75
76	Rac-GAP-dependent Inhibition of Breast Cancer Cell Proliferation by β2-Chimerin. Journal of Biological Chemistry, 2005, 280, 24363-24370.	3.4	74
77	Demystifying the Effects of a Threeâ€Đimensional Microenvironment in Tissue Morphogenesis. Methods in Cell Biology, 2007, 83, 547-583.	1.1	72
78	Watch thy neighbor: cancer is a communal affair. Journal of Cell Science, 2004, 117, 1287-1290.	2.0	71
79	A bulky glycocalyx fosters metastasis formation by promoting G1 cell cycle progression. ELife, 2017, 6, .	6.0	71
80	Targeting acid ceramidase inhibits YAP/TAZ signaling to reduce fibrosis in mice. Science Translational Medicine, 2020, 12, .	12.4	71
81	Tissue mechanics in stem cell fate, development, and cancer. Developmental Cell, 2021, 56, 1833-1847.	7.0	71
82	STAT3 Blockade Inhibits Radiation-Induced Malignant Progression in Glioma. Cancer Research, 2015, 75, 4302-4311.	0.9	70
83	The tissue diagnostic instrument. Review of Scientific Instruments, 2009, 80, 054303.	1.3	66
84	Force-dependent breaching of the basement membrane. Matrix Biology, 2017, 57-58, 178-189.	3.6	66
85	Adhesion-mediated mechanosignaling forces mitohormesis. Cell Metabolism, 2021, 33, 1322-1341.e13.	16.2	65
86	The ultrastructure of MCF-10A acini. Journal of Cellular Physiology, 2006, 208, 141-148.	4.1	63
87	Tissue mechanics, an important regulator of development and disease. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180215.	4.0	61
88	Deconstructing Signaling in Three Dimensions. Biochemistry, 2014, 53, 2078-2090.	2.5	60
89	Rac-dependent cyclin D1 gene expression regulated by cadherin- and integrin-mediated adhesion. Journal of Cell Science, 2008, 121, 226-233.	2.0	56
90	Tumour-stromal interactions. Integrins and cell adhesions as modulators of mammary cell survival and transformation. Breast Cancer Research, 2001, 3, 224.	5.0	55

#	Article	IF	CITATIONS
91	Don't sugarcoat it: How glycocalyx composition influences cancer progression. Journal of Cell Biology, 2020, 219, .	5.2	55
92	Discoidin domain receptor 1 (DDR1) ablation promotes tissue fibrosis and hypoxia to induce aggressive basal-like breast cancers. Genes and Development, 2018, 32, 244-257.	5.9	54
93	Exploring the Link Between Human Embryonic Stem Cell Organization and Fate Using Tension-Calibrated Extracellular Matrix Functionalized Polyacrylamide Gels. Methods in Molecular Biology, 2012, 916, 317-350.	0.9	51
94	Analysis of Protein Expression during Oxidative Stress in Breast Epithelial Cells Using a Stable Isotope Labeled Proteome Internal Standard. Journal of Proteome Research, 2005, 4, 2007-2014.	3.7	50
95	CpG Island Tumor Suppressor Promoter Methylation in Non-BRCA-Associated Early Mammary Carcinogenesis. Cancer Epidemiology Biomarkers and Prevention, 2009, 18, 901-914.	2.5	49
96	Cellular adaptation to biomechanical stress across length scales in tissue homeostasis and disease. Seminars in Cell and Developmental Biology, 2017, 67, 141-152.	5.0	43
97	Development of Aggressive Pancreatic Ductal Adenocarcinomas Depends on Granulocyte Colony Stimulating Factor Secretion in Carcinoma Cells. Cancer Immunology Research, 2017, 5, 718-729.	3.4	41
98	Loss of <i>miR-203</i> regulates cell shape and matrix adhesion through ROBO1/Rac/FAK in response to stiffness. Journal of Cell Biology, 2016, 212, 707-719.	5.2	38
99	Cell and tissue mechanics: the new cell biology frontier. Molecular Biology of the Cell, 2017, 28, 1815-1818.	2.1	38
100	YAP forces fibroblasts to feel the tension. Nature Cell Biology, 2013, 15, 570-572.	10.3	36
101	SWI/SNF chromatin remodeling enzyme ATPases promote cell proliferation in normal mammary epithelial cells. Journal of Cellular Physiology, 2010, 223, 667-678.	4.1	33
102	Protein synthesis, DNA degradation, and morphological changes during programmed cell death in labial glands ofManduca sexta. , 1997, 21, 249-257.		31
103	Fibronectin rescues estrogen receptor α from lysosomal degradation in breast cancer cells. Journal of Cell Biology, 2018, 217, 2777-2798.	5.2	30
104	Extracellular matrix: the central regulator of cell and tissue homeostasis. Trends in Cell Biology, 1997, 7, 40-42.	7.9	28
105	Proteoglycans as Mediators of Cancer Tissue Mechanics. Frontiers in Cell and Developmental Biology, 2020, 8, 569377.	3.7	28
106	Matrix compliance permits NF-κB activation to drive therapy resistance in breast cancer. Journal of Experimental Medicine, 2021, 218, .	8.5	27
107	Spatiotemporal mosaic self-patterning of pluripotent stem cells using CRISPR interference. ELife, 2018, 7, .	6.0	27
108	Comprehensive characterization of DNA methylation changes in Fuchs endothelial corneal dystrophy. PLoS ONE, 2017, 12, e0175112.	2.5	26

#	Article	IF	CITATIONS
109	Autophagy in stromal fibroblasts promotes tumor desmoplasia and mammary tumorigenesis. Genes and Development, 2021, 35, 963-975.	5.9	25
110	Single-cell transcriptome analysis defines heterogeneity of the murine pancreatic ductal tree. ELife, 2021, 10, .	6.0	23
111	Strength Under Tension. Science, 2013, 341, 965-966.	12.6	20
112	Understanding tissue context influences on intratumour heterogeneity. Nature Cell Biology, 2014, 16, 301-302.	10.3	20
113	EPH/EPHRIN regulates cellular organization by actomyosin contractility effects on cell contacts. Journal of Cell Biology, 2021, 220, .	5.2	20
114	Adaptation to Low Dietary Calcium in Magnesium-Deficient Rats. Journal of Nutrition, 1988, 118, 729-734.	2.9	18
115	Membrane-Associated MMP Regulators. Developmental Cell, 2002, 2, 6-7.	7.0	18
116	Antisecretory Factor–Mediated Inhibition of Cell Volume Dynamics Produces Antitumor Activity in Glioblastoma. Molecular Cancer Research, 2018, 16, 777-790.	3.4	16
117	Modeling Tissue Polarity in Context. Journal of Molecular Biology, 2018, 430, 3613-3628.	4.2	16
118	Multicellular Architecture of Malignant Breast Epithelia Influences Mechanics. PLoS ONE, 2014, 9, e101955.	2.5	16
119	Regulation of renal 25(OH)D ₃ 1α-hydroxylase: signal transduction pathways. Biochemistry and Cell Biology, 1991, 69, 768-770.	2.0	15
120	Excess area dependent scaling behavior of nano-sized membrane tethers. Physical Biology, 2018, 15, 026002.	1.8	15
121	Forcing the Third Dimension. Cell, 2006, 125, 429-431.	28.9	13
122	Visualizing mechanical modulation of nanoscale organization of cell-matrix adhesions. Integrative Biology (United Kingdom), 2016, 8, 795-804.	1.3	12
123	Screening of organoids derived from patients with breast cancer implicates the repressor NCOR2 in cytotoxic stress response and antitumor immunity. Nature Cancer, 2022, 3, 734-752.	13.2	12
124	Molecular Profiling of Prostatic Acinar Morphogenesis Identifies PDCD4 and KLF6 as Tissue Architecture–Specific Prognostic Markers in Prostate Cancer. American Journal of Pathology, 2013, 182, 363-374.	3.8	11
125	1,25-Dihydroxycholecalciferol Supplementation Prevents Hypocalcemia in Magnesium-Deficient Chicks. Journal of Nutrition, 1993, 123, 764-771.	2.9	10
126	Tumorâ€induced solid stress activates βâ€catenin signaling to drive malignant behavior in normal, tumorâ€adjacent cells. BioEssays, 2015, 37, 1293-1297.	2.5	10

#	Article	IF	CITATIONS
127	Fighting the force: Potential of homeobox genes for tumor microenvironment regulation. Biochimica Et Biophysica Acta: Reviews on Cancer, 2015, 1855, 248-253.	7.4	10
128	Site-Specific Modulation of Charge Controls the Structure and Stimulus Responsiveness of Intrinsically Disordered Peptide Brushes. Langmuir, 2016, 32, 5990-5996.	3.5	10
129	Enforcing Order on Signaling. Science, 2010, 327, 1335-1336.	12.6	9
130	Compartment resolved proteomics reveals a dynamic matrisome in a biomechanically driven model of pancreatic ductal adenocarcinoma. Journal of Immunology and Regenerative Medicine, 2018, 1, 67-75.	0.4	9
131	Activation of protein kinase C modulates dihydroxycholecalciferol synthesis in rat renal tubules. Cellular Signalling, 1992, 4, 293-301.	3.6	8
132	Derivation of a nuclear heterogeneity image index to grade DCIS. Computational and Structural Biotechnology Journal, 2020, 18, 4063-4070.	4.1	8
133	Laying down the tracks. Nature Materials, 2012, 11, 490-492.	27.5	7
134	Vitamin D Receptors and Compensatory Tissue Growth in Spontaneously Diabetic BB Rats. Annals of Nutrition and Metabolism, 1991, 35, 196-202.	1.9	6
135	New Horizons in Advocacy Engaged Physical Sciences and Oncology Research. Trends in Cancer, 2018, 4, 260-264.	7.4	6
136	Vitamin D metabolism in magnesium deficient chicks. Nutrition Research, 1989, 9, 1363-1369.	2.9	5
137	The microenvironment matters. Molecular Biology of the Cell, 2014, 25, 3254-3258.	2.1	5
138	Immunosuppressive glycoproteins associate with breast tumor fibrosis and aggression. Matrix Biology Plus, 2022, 14, 100105.	3.5	5
139	Patterning the Geometry of Human Embryonic Stem Cell Colonies on Compliant Substrates to Control Tissue-Level Mechanics. Journal of Visualized Experiments, 2019, , .	0.3	4
140	G†̃rab'bing the Microenvironment for Invasion. Developmental Cell, 2007, 13, 462-463.	7.0	3
141	Extracellular Matrix and Nuclear Matrix Interactions May Regulate Apoptosis and Tissue-Specific Gene Expression: A Concept Whose Time has Come. Advances in Molecular and Cell Biology, 1997, 24, 1-55.	0.1	2
142	Membrane Tension Locks In Pluripotency. Cell Stem Cell, 2021, 28, 175-176.	11.1	2
143	Mechanosensitive steroid hormone signaling and cell fate. Endocrinology, 0, , .	2.8	2
144	Zena Werb 1945–2020. Nature Cancer, 2020, 1, 753-754.	13.2	1

9

#	Article	IF	CITATIONS
145	Improving DCIS diagnosis and predictive outcome by applying artificial intelligence. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1876, 188555.	7.4	1
146	ATPS-63OSMOTIC SWELLING REGULATES TUMOR GROWTH AND DRUG UPTAKE IN HUMAN GLIOBLASTOMA. Neuro-Oncology, 2015, 17, v32.1-v32.	1.2	0
147	EXTH-23. ANTISECRETORY FACTOR-MEDIATED LOWERING OF INTERSTITIAL FLUID PRESSURE PRODUCES ANTI-TUMOR ACTIVITY IN GLIOBLASTOMA. Neuro-Oncology, 2017, 19, vi77-vi77.	1.2	0
148	TMIC-43. A TENSION-MEDIATED GLYCOCALYX FEEDBACK LOOP PROMOTES A MESENCHYMAL, STEM-LIKE PHENOTYPE IN GLIOBLASTOMA. Neuro-Oncology, 2018, 20, vi265-vi266.	1.2	0
149	Mechanobiology: forcing the second act. Molecular Biology of the Cell, 2021, 32, 1611-1613.	2.1	0
150	Zena Werb (1945–2020): Mourning the loss of a tissue microenvironment icon. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27759-27760.	7.1	0
151	NCI's publication affiliation conundrum: Reframing innovation to incentivize an equitable path for advocate representation. Translational Oncology, 2022, 16, 101325.	3.7	0
152	The glycocalyx in tumor progression and metastasis. FASEB Journal, 2022, 36, .	0.5	0