Andrey Milchev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8134256/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rugotaxis: Droplet motion without external energy supply. Europhysics Letters, 2022, 137, 43002.	2.0	5
2	Surface enrichment and interdiffusion in blends of semiflexible polymers of different stiffness. Soft Matter, 2022, , .	2.7	1
3	Phase Separation and Nematic Order in Lyotropic Solutions: Two Types of Polymers with Different Stiffnesses in a Common Solvent. Journal of Physical Chemistry B, 2021, 125, 956-969.	2.6	14
4	Phase Separation in a Binary Mixture of Semiflexible Polymers Confined in a Repulsive Sphere. Macromolecules, 2021, 54, 6312-6326.	4.8	5
5	Blends of Semiflexible Polymers: Interplay of Nematic Order and Phase Separation. Polymers, 2021, 13, 2270.	4.5	4
6	Adsorption of Semiflexible Polymers in Cylindrical Tubes. Langmuir, 2021, 37, 11759-11770.	3.5	0
7	Cylindrical confinement of solutions containing semiflexible macromolecules: surface-induced nematic order versus phase separation. Soft Matter, 2021, 17, 3443-3454.	2.7	6
8	Entropic Unmixing in Nematic Blends of Semiflexible Polymers. ACS Macro Letters, 2020, 9, 1779-1784.	4.8	18
9	Understanding the properties of liquid-crystalline polymers by computational modeling. JPhys Materials, 2020, 3, 032008.	4.2	19
10	Dynamic Responsive Formation of Nanostructured Fibers in a Hydrogel Network: A Molecular Dynamics Study. Frontiers in Chemistry, 2020, 8, 120.	3.6	3
11	Nanoparticle diffusion in polymer melts: Molecular dynamics simulations and mode-coupling theory. Journal of Chemical Physics, 2020, 152, 234902.	3.0	4
12	Semiflexible Polymers Interacting with Planar Surfaces: Weak versus Strong Adsorption. Polymers, 2020, 12, 255.	4.5	7
13	How does stiffness of polymer chains affect their adsorption transition?. Journal of Chemical Physics, 2020, 152, 064901.	3.0	22
14	Slit Pore Confinement of Semiflexible Polymers — Interplay of Adsorption and Liquid-Crystalline Order. , 2020, , 1-35.		1
15	The smectic phase in semiflexible polymer materials: A large scale molecular dynamics study. Computational Materials Science, 2019, 166, 230-239.	3.0	16
16	Linear Dimensions of Adsorbed Semiflexible Polymers: What Can Be Learned about Their Persistence Length?. Physical Review Letters, 2019, 123, 128003.	7.8	19
17	Anomalous Slowdown of Polymer Detachment Dynamics on Carbon Nanotubes. Physical Review Letters, 2019, 122, 218003.	7.8	5
18	Densely Packed Semiflexible Macromolecules in a Rigid Spherical Capsule. Macromolecules, 2018, 51, 2002-2016.	4.8	22

#	Article	IF	CITATIONS
19	Adsorption and structure formation of semiflexible polymers on spherical surfaces. Polymer, 2018, 145, 463-472.	3.8	11
20	Nematic order in solutions of semiflexible polymers: Hairpins, elastic constants, and the nematic-smectic transition. Journal of Chemical Physics, 2018, 149, 174909.	3.0	29
21	Semiflexible polymers confined in a slit pore with attractive walls: two-dimensional liquid crystalline order versus capillary nematization. Soft Matter, 2017, 13, 1888-1903.	2.7	16
22	Conformations and orientational ordering of semiflexible polymers in spherical confinement. Journal of Chemical Physics, 2017, 146, 194907.	3.0	19
23	Dynamic Mechanical Response of Hybrid Physical Covalent Networks â^ Molecular Dynamics Simulation. Macromolecular Symposia, 2017, 373, 1600147.	0.7	2
24	Stiffness-guided motion of a droplet on a solid substrate. Journal of Chemical Physics, 2017, 146, 244705.	3.0	23
25	Semiflexible Polymers in Spherical Confinement: Bipolar Orientational Order Versus Tennis Ball States. Physical Review Letters, 2017, 118, 217803.	7.8	36
26	Smectic C and Nematic Phases in Strongly Adsorbed Layers of Semiflexible Polymers. Nano Letters, 2017, 17, 4924-4928.	9.1	19
27	Capillary Nematization of Semiflexible Polymers. Macromolecular Theory and Simulations, 2017, 26, 1600036.	1.4	15
28	Modeling the interfacial tension dependence on composition and stiffness of nonionic surfactants on liquid–liquid interfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 519, 168-178.	4.7	5
29	10.1063/1.4990436.1., 2017,,.		0
30	Semiflexible Polymers in the Bulk and Confined by Planar Walls. Polymers, 2016, 8, 296.	4.5	23
31	Dynamics of single semiflexible polymers in dilute solution. Journal of Chemical Physics, 2016, 145, 234903.	3.0	26
32	Molecular weight effects on interfacial properties of linear and ring polymer melts: A molecular dynamics study. Journal of Chemical Physics, 2016, 145, 194902.	3.0	8
33	Semiflexible polymers under good solvent conditions interacting with repulsive walls. Journal of Chemical Physics, 2016, 144, 174902.	3.0	37
34	A new insight into the isotropic–nematic phase transition in lyotropic solutions of semiflexible polymers: density-functional theory tested by molecular dynamics. Soft Matter, 2016, 12, 4944-4959.	2.7	51
35	Anomalous Fluctuations of Nematic Order in Solutions of Semiflexible Polymers. Physical Review Letters, 2016, 116, 187801.	7.8	45
36	Deformation-induced damage and recovery in model hydrogels – A molecular dynamics simulation. Journal of the Mechanics and Physics of Solids, 2016, 94, 372-387.	4.8	16

#	Article	IF	CITATIONS
37	Effects of polymer stiffness on surface tension and pressure in confinement. Journal of Chemical Physics, 2015, 143, 064701.	3.0	9
38	Semiflexible polymer brushes and the brush-mushroom crossover. Soft Matter, 2015, 11, 2604-2616.	2.7	40
39	Detachment of semiflexible polymer chains from a substrate: A molecular dynamics investigation. Journal of Chemical Physics, 2014, 141, 214902.	3.0	5
40	Star polymers rupture induced by constant forces. Journal of Chemical Physics, 2014, 141, 164907.	3.0	0
41	Mechanical Response of Hybrid Cross-Linked Networks to Uniaxial Deformation: A Molecular Dynamics Model. Macromolecules, 2014, 47, 8795-8807.	4.8	14
42	Observation of a tricritical wedge filling transition in the 3D Ising model. Europhysics Letters, 2014, 108, 26003.	2.0	2
43	Molecular Dynamic Study of the Structure and Dynamics of Polymer Melt at Solid Surfaces. Soft Materials, 2014, 12, S56-S70.	1.7	9
44	Critical adsorption of a single macromolecule in polymer brushes. Soft Matter, 2014, 10, 5974-5990.	2.7	9
45	Unconventional ordering behavior of semi-flexible polymers in dense brushes under compression. Soft Matter, 2014, 10, 3783.	2.7	19
46	Arm Retraction Dynamics and Bistability of a Three-Arm Star Polymer in a Nanopore. Macromolecules, 2014, 47, 2156-2168.	4.8	8
47	Force spectroscopy of polymer desorption: theory and molecular dynamics simulations. Soft Matter, 2014, 10, 2785.	2.7	16
48	Polymer absorption in dense polymer brushes vs. polymer adsorption on the brush-solvent interface. Europhysics Letters, 2014, 106, 58001.	2.0	3
49	Structure and dynamics of polymer melt confined between two solid surfaces: A molecular dynamics study. Journal of Chemical Physics, 2014, 141, 044907.	3.0	24
50	Surface Microdynamics Phase Transition and Internal Structure of High-Density, Ultrathin PHEMA- <i>b</i> -PNIPAM Diblock Copolymer Brushes on Silicone Rubber. Macromolecules, 2013, 46, 5260-5278.	4.8	28
51	Rupture Dynamics of Macromolecules. Lecture Notes in Applied and Computational Mechanics, 2013, , 1-42.	2.2	Ο
52	Recent developments in computer modeling of polymer systems. Polymer Science - Series C, 2013, 55, 1-3.	1.7	0
53	Mechanical Properties of Single Molecules and Polymer Aggregates. Advances in Polymer Science, 2013, , 1-60.	0.8	1
54	Driven translocation of a polymer: Fluctuations at work. Physical Review E, 2013, 87, .	2.1	25

#	Article	IF	CITATIONS
55	Adsorption of Oligomers and Polymers into a Polymer Brush Formed from Grafted Ring Polymers. Macromolecules, 2013, 46, 8724-8731.	4.8	8
56	The Escape Transition of a Compressed Star Polymer: Self-Consistent Field Predictions Tested by Simulation. Macromolecules, 2013, 46, 8009-8016.	4.8	2
57	Star polymers confined in a nanoslit: a simulation test of scaling and self-consistent field theories. Soft Matter, 2013, 9, 10522.	2.7	17
58	Controlling the Interactions between Soft Colloids via Surface Adsorption. Macromolecules, 2013, 46, 3648-3653.	4.8	14
59	Efficient Separation of Long Polymer Chains by Contour Length and Architecture. ACS Macro Letters, 2013, 2, 879-881.	4.8	8
60	Bending or buckling: Compression-induced phase transition in a semi-flexible polymer brush. Europhysics Letters, 2013, 102, 58003.	2.0	17
61	Relaxation Mechanisms of Physical Hydrogels Networks. , 2013, , 223-231.		1
62	Tension enhancement in branched macromolecules upon adhesion on a solid substrate. Europhysics Letters, 2012, 97, 58003.	2.0	13
63	Semiflexible polymers grafted to a solid planar substrate: Changing the structure from polymer brush to "polymer bristle― Journal of Chemical Physics, 2012, 136, 194901.	3.0	24
64	Thermal decomposition of a honeycomb-network sheet: A molecular dynamics simulation study. Journal of Chemical Physics, 2012, 137, 054901.	3.0	2
65	Thermal Degradation of Adsorbed Bottleâ€Brush Macromolecules: When Do Strong Covalent Bonds Break Easily?. Macromolecular Symposia, 2012, 316, 112-122.	0.7	6
66	Force-induced breakdown of flexible polymerized membrane. Physical Review E, 2012, 85, 021805.	2.1	4
67	KINETICS OF POLYMER EJECTION FROM CAPSID CONFINEMENT: SCALING CONSIDERATIONS AND COMPUTER EXPERIMENT. International Journal of Modern Physics C, 2012, 23, 1240005.	1.7	1
68	Dynamic behavior of acrylic acid clusters as quasi-mobile nodes in a model of hydrogel network. Journal of Chemical Physics, 2012, 137, 244908.	3.0	7
69	Dynamic Compression of in Situ Grown Living Polymer Brush: Simulation and Experiment. Macromolecules, 2012, 45, 9827-9840.	4.8	10
70	Polymer Detachment Kinetics from Adsorbing Surface: Theory, Simulation and Similarity to Infiltration into Porous Medium. Macromolecules, 2012, 45, 4371-4380.	4.8	20
71	Polymer brushes on flat and curved surfaces: How computer simulations can help to test theories and to interpret experiments. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 1515-1555.	2.1	190
72	Structure and dynamics of a polymer melt at an attractive surface. European Physical Journal E, 2012, 35, 97.	1.6	45

#	Article	IF	CITATIONS
73	Computer Simulation Studies of Chain Dynamics in Polymer Brushes. Macromolecules, 2012, 45, 4381-4393.	4.8	48
74	Stretching of Free Chains Confined in Concave Brush-Coated Nanocylinders. Macromolecules, 2012, 45, 2580-2587.	4.8	15
75	Forced translocation of a polymer: Dynamical scaling versus molecular dynamics simulation. Physical Review E, 2012, 85, 041801.	2.1	59
76	Thermal Degradation of Adsorbed Bottle-Brush Macromolecules: A Molecular Dynamics Simulation. Macromolecules, 2011, 44, 3981-3987.	4.8	18
77	Polymer brushes under flow and in other out-of-equilibrium conditions. Soft Matter, 2011, 7, 7159.	2.7	97
78	Structural properties of concave cylindrical brushes interacting with free chains. Soft Matter, 2011, 7, 5669.	2.7	24
79	Single-polymer dynamics under constraints: scaling theory and computer experiment. Journal of Physics Condensed Matter, 2011, 23, 103101.	1.8	126
80	Fractional Brownian motion approach to polymer translocation: The governing equation of motion. Physical Review E, 2011, 83, 011802.	2.1	54
81	Thermal degradation of unstrained single polymer chain: Non-linear effects at work. Journal of Chemical Physics, 2011, 134, 224901.	3.0	19
82	Polymer chain scission at constant tension —An example of force-induced collective behaviour. Europhysics Letters, 2011, 94, 48003.	2.0	20
83	Anomalous structure and scaling of ring polymer brushes. Europhysics Letters, 2011, 95, 28003.	2.0	24
84	Polymer Chain Adsorption on a Solid Surface: Scaling Arguments and Computer Simulations. Springer Series in Surface Sciences, 2011, , 185-204.	0.3	6
85	Growth kinetics of single copper crystals: the concentration dependence. Russian Journal of Electrochemistry, 2010, 46, 607-610.	0.9	8
86	Polymer desorption under pulling a 1st — order phase transition without phase coexistence. Physics Procedia, 2010, 3, 1459-1474.	1.2	3
87	Thermal breakage and self-healing of a polymer chain under tensile stress. Journal of Chemical Physics, 2010, 132, 204902.	3.0	23
88	Polymer brushes with nanoinclusions under shear: A molecular dynamics investigation. Biomicrofluidics, 2010, 4, 32202.	2.4	17
89	Spherical polymer brushes under good solvent conditions: Molecular dynamics results compared to density functional theory. Journal of Chemical Physics, 2010, 133, 184901.	3.0	93
90	Ejection of a Polymer Chain from a Nanopore: Theory and Computer Experiment. Macromolecules, 2010, 43, 6877-6885.	4.8	34

#	Article	IF	CITATIONS
91	Absorption/expulsion of oligomers and linear macromolecules in a polymer brush. Journal of Chemical Physics, 2010, 132, .	3.0	38
92	Method for wettability characterization based on contact line pinning. Physical Review E, 2010, 81, 041603.	2.1	8
93	Polymer desorption under pulling: A dichotomic phase transition. Physical Review E, 2009, 79, 030802.	2.1	23
94	Comment on â€~Anomalous dynamics of unbiased polymer translocation through a narrow pore' and other recent papers by D Panja, G Barkema and R Ball. Journal of Physics Condensed Matter, 2009, 21, 098001.	1.8	14
95	Structure, Dynamic Properties, and Phase Transitions of Tethered Membranes. Annals of the New York Academy of Sciences, 2009, 1161, 397-406.	3.8	1
96	Polymer Translocation through a Nanopore: A Showcase of Anomalous Diffusion. Annals of the New York Academy of Sciences, 2009, 1161, 95-104.	3.8	7
97	Capillary Rise in Nanotubes Coated with Polymer Brushes. Annals of the New York Academy of Sciences, 2009, 1161, 537-548.	3.8	9
98	Nanoinclusions in polymer brushes with explicit solvent – A molecular dynamics investigation. Journal of Colloid and Interface Science, 2009, 336, 51-58.	9.4	37
99	The escape transition of a polymer: A unique case of non-equivalence between statistical ensembles. European Physical Journal E, 2009, 29, 9-25.	1.6	16
100	Pulling an adsorbed polymer chain off a solid surface. European Physical Journal E, 2009, 29, 285-297.	1.6	20
101	Scaling exponents of forced polymer translocation through a nanopore. European Physical Journal E, 2009, 29, 423-429.	1.6	86
102	Capillary Filling in Microchannels with Wall Corrugations: A Comparative Study of the Concusâ´'Finn Criterion by Continuum, Kinetic, and Atomistic Approaches. Langmuir, 2009, 25, 12653-12660.	3.5	43
103	Forced-Induced Desorption of a Polymer Chain Adsorbed on an Attractive Surface: Theory and Computer Experiment. Macromolecules, 2009, 42, 2236-2250.	4.8	31
104	Hydrokinetic simulations of nanoscopic precursor films in rough channels. Journal of Statistical Mechanics: Theory and Experiment, 2009, 2009, P06007.	2.3	15
105	Local Viscosity in the Vicinity of a Wall Coated by Polymer Brush from Green–Kubo Relations. Macromolecular Theory and Simulations, 2008, 17, 313-318.	1.4	9
106	Excess free energy of nanoparticles in a polymer brush. Polymer, 2008, 49, 3611-3618.	3.8	56
107	Phase transitions and interface fluctuations in double wedges and bi-pyramids with competing surface fields. European Physical Journal B, 2008, 64, 499-503.	1.5	3
108	Adsorption kinetics of a single polymer on a solid plane. Physical Review E, 2008, 77, 061603.	2.1	20

1

#	Article	IF	CITATIONS
109	Molecular Dynamics Simulations of Capillary Rise Experiments in Nanotubes Coated with Polymer Brushes. Langmuir, 2008, 24, 1232-1239.	3.5	36
110	Adsorption of Multiblock and Random Copolymer on a Solid Surface: Critical Behavior and Phase Diagram. Macromolecules, 2008, 41, 2920-2930.	4.8	30
111	Flow and transport in brush-coated capillaries: A molecular dynamics simulation. Physics of Fluids, 2008, 20, 092102.	4.0	19
112	Adsorption of self-avoiding tethered membranes: A Monte Carlo simulation study. Journal of Chemical Physics, 2008, 129, 215103.	3.0	3
113	Forced imbibition—a tool for separate determination of Laplace pressure and drag force in capillary filling experiments. Physical Chemistry Chemical Physics, 2008, 10, 1867.	2.8	15
114	Universal properties of a single polymer chain in slit: Scaling versus molecular dynamics simulations. Journal of Chemical Physics, 2008, 128, 234902.	3.0	44
115	Dynamics of a stretched nonlinear polymer chain. Journal of Chemical Physics, 2008, 129, 154908.	3.0	16
116	Evidence of thin-film precursors formation in hydrokinetic and atomistic simulations of nano-channel capillary filling. Europhysics Letters, 2008, 84, 44003.	2.0	39
117	Anomalous diffusion of a tethered membrane: A Monte Carlo investigation. Physical Review E, 2008, 77, 041906.	2.1	16
118	Polymer Brushes on Flat and Curved Substrates: Scaling Concepts and Computer Simulations. Macromolecular Symposia, 2007, 252, 47-57.	0.7	23
119	Structure, dynamics, and phase transitions of tethered membranes: A Monte Carlo simulation study. Journal of Chemical Physics, 2007, 127, 194903.	3.0	11
120	Capillary Rise in Nanopores: Molecular Dynamics Evidence for the Lucas-Washburn Equation. Physical Review Letters, 2007, 99, 054501.	7.8	246
121	Driven polymer translocation through a nanopore: A manifestation of anomalous diffusion. Europhysics Letters, 2007, 79, 18002.	2.0	109
122	Polymer translocation through a nanopore: A showcase of anomalous diffusion. Physical Review E, 2007, 76, 010801.	2.1	122
123	Polymer brushes in solvents of variable quality: Molecular dynamics simulations using explicit solvent. Journal of Chemical Physics, 2007, 127, 084905.	3.0	126
124	Monte Carlo simulations of phase transitions of systems in nanoscopic confinement. Computer Physics Communications, 2007, 177, 140-145.	7.5	9
125	Interface stability and copolymers: Application to food systems. Food Hydrocolloids, 2007, 21, 870-878.	10.7	12

126 Simulation of Nanodroplets on Solid Surfaces: Wetting, Spreading and Bridging. , 2006, , 105-126.

#	Article	IF	CITATIONS
127	Polymer brushes in cylindrical pores: Simulation versus scaling theory. Journal of Chemical Physics, 2006, 125, 034905.	3.0	68
128	Kinetics of Copolymer Localization at a Selective Liquidâ^'Liquid Interface. Macromolecules, 2006, 39, 1234-1244.	4.8	10
129	Field-Driven Translocation of Regular Block Copolymers through a Selective Liquidâ ^{°°} Liquid Interface. Macromolecules, 2006, 39, 7115-7124.	4.8	5
130	Multiblock copolymers at selective liquid–liquid interfaces: Toward a block size chromatography. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 2572-2588.	2.1	3
131	Electrochemical growth of single mercury droplets under joint ohmic, diffusion, and charge transfer limitations. Russian Journal of Electrochemistry, 2006, 42, 678-680.	0.9	1
132	Structure of Polymer Brushes in Cylindrical Tubes: A Molecular Dynamics Simulation. Macromolecular Theory and Simulations, 2006, 15, 573-583.	1.4	48
133	Copolymer adsorption kinetics at a selective liquid-liquid interface: Scaling theory and computer experiment. Europhysics Letters, 2006, 73, 204-210.	2.0	13
134	Polymer chains in a soft nanotube: A Monte Carlo Study. Journal of Chemical Physics, 2006, 124, 024909.	3.0	26
135	POLYMER CHAINS BEHAVIOR IN NANOTUBES: A MONTE CARLO STUDY. , 2006, , 219-220.		0
136	Adsorption-induced polymer translocation through a nanopore: a Monte Carlo investigation. Computer Physics Communications, 2005, 169, 107-110.	7.5	5
137	Monte Carlo simulations of Ising models and polymer blends in double wedge geometry: Evidence for novel types of critical phenomena. Computer Physics Communications, 2005, 169, 226-229.	7.5	5
138	A new boundary-controlled phase transition: Phase separation in an Ising bi-pyramid with competing surface fields. Europhysics Letters, 2005, 70, 348-354.	2.0	10
139	Polymer droplets on substrates with striped surface domains: molecular dynamics simulations of equilibrium structure and liquid bridge rupture. Journal of Physics Condensed Matter, 2005, 17, S4199-S4211.	1.8	9
140	lsing systems with pairwise competing surface fields. Journal of Physics Condensed Matter, 2005, 17, 6783-6804.	1.8	3
141	Localization of a multiblock copolymer at a selective interface: Scaling predictions and Monte Carlo verification. Journal of Chemical Physics, 2005, 122, 094907.	3.0	25
142	Phase transitions in nanosystems caused by interface motion: The Ising bipyramid with competing surface fields. Physical Review E, 2005, 72, 031603.	2.1	11
143	Non-Fickian interdiffusion of dynamically asymmetric species: A molecular-dynamics study. Journal of Chemical Physics, 2005, 122, 204105.	3.0	7
144	Dynamics of a polymer in a quenched random medium: A Monte Carlo investigation. Europhysics Letters, 2004, 68, 384-390.	2.0	6

#	Article	IF	CITATIONS
145	Polymer nanodroplets forming liquid bridges in chemically structured slit pores: A computer simulation. Journal of Chemical Physics, 2004, 121, 12632.	3.0	22
146	Polymer translocation through a nanopore induced by adsorption: Monte Carlo simulation of a coarse-grained model. Journal of Chemical Physics, 2004, 121, 6042-6051.	3.0	127
147	Dynamics of a Spreading Nanodroplet: A Molecular Dynamic Simulation. Macromolecular Theory and Simulations, 2003, 12, 573-581.	1.4	17
148	Interface Localization-Delocalization in a Double Wedge: A New Universality Class with Strong Fluctuations and Anisotropic Scaling. Physical Review Letters, 2003, 90, 136101.	7.8	63
149	Wedge filling and interface delocalization in finite Ising lattices with antisymmetric surface fields. Physical Review E, 2003, 68, 031601.	2.1	47
150	Introduction to Monte Carlo Methods. , 2003, , 39-55.		0
151	Electrophoresis of an end-labeled polymer chain: A molecular dynamics study. Physical Review E, 2002, 66, 041806.	2.1	3
152	Polymer depletion interaction between a colloid particle and a wall: A Monte Carlo study. Journal of Chemical Physics, 2002, 117, 5415-5420.	3.0	11
153	Droplet spreading: A Monte Carlo test of Tanner's law. Journal of Chemical Physics, 2002, 116, 7691-7694.	3.0	33
154	Momentum-dependent interfacial tension in polymer solutions. Europhysics Letters, 2002, 59, 81-86.	2.0	25
155	Polymer nanodroplets adsorbed on nanocylinders: A Monte Carlo study. Journal of Chemical Physics, 2002, 117, 6852-6862.	3.0	29
156	Nanodroplets on a solid plane: wetting and spreading in a Monte Carlo simulation. Computer Physics Communications, 2002, 146, 38-53.	7.5	26
157	Title is missing!. Journal of Computer-Aided Materials Design, 2002, 9, 33-74.	0.7	53
158	Drift of a polymer chain in a porous mediumA Monte Carlo study. European Physical Journal E, 2002, 7, 65-71.	1.6	0
159	The electrostatic persistence length of polymers beyond the OSF limit. European Physical Journal E, 2002, 8, 3-14.	1.6	61
160	Polymer depletion interaction between parallel wallsA Monte Carlo study. European Physical Journal E, 2002, 8, 531-537.	1.6	11
161	Title is missing!. European Physical Journal E, 2002, 7, 65-71.	1.6	2
162	Formation of Block Copolymer Micelles in Solution:Â A Monte Carlo Study of Chain Length Dependence. Macromolecules, 2001, 34, 1881-1893.	4.8	117

#	Article	IF	CITATIONS
163	Wetting behavior of nanodroplets: The limits of Young's rule validity. Europhysics Letters, 2001, 56, 695-701.	2.0	40
164	Osmotic pressure of solutions containing flexible polymers subject to an annealed molecular weight distribution. Europhysics Letters, 2001, 54, 58-64.	2.0	11
165	Polymer melt droplets adsorbed on a solid wall: A Monte Carlo simulation. Journal of Chemical Physics, 2001, 114, 8610-8618.	3.0	56
166	A Monte Carlo study of a tethered polymer chain in a uniform field. Macromolecular Theory and Simulations, 2000, 9, 516-522.	1.4	5
167	Formation and equilibrium properties of living polymer brushes. Journal of Chemical Physics, 2000, 112, 1606-1615.	3.0	51
168	Dynamical Monte Carlo study of equilibrium polymers. II. The role of rings. Journal of Chemical Physics, 2000, 113, 6992-7005.	3.0	54
169	Dynamical Monte Carlo study of equilibrium polymers: Effects of high density and ring formation. Physical Review E, 2000, 61, 2959-2966.	2.1	32
170	Conformations of Random Polyampholytes. Physical Review Letters, 2000, 85, 4305-4308.	7.8	56
171	MOBILITY OF POLYMERS NEAR SURFACES. , 2000, , 1-49.		6
172	Anomalous diffusion in disordered lattices: Effect of bias. , 1999, , 83-100.		0
173	Adsorption of a polyelectrolyte chain on a charged surface: a Monte Carlo simulation of scaling behaviour. Journal of Physics Condensed Matter, 1999, 11, 9907-9923.	1.8	24
174	Escape transition of a compressed polymer mushroom under good solvent conditions. Europhysics Letters, 1999, 47, 675-680.	2.0	33
175	Log-periodic oscillations for biased diffusion of a polymer chain in a porous medium. European Physical Journal B, 1999, 9, 659-667.	1.5	4
176	A Monte-Carlo study of equilibrium polymers in a shear flow. European Physical Journal B, 1999, 12, 241-251.	1.5	20
177	Escape transition of a polymer chain: Phenomenological theory and Monte Carlo simulations. Physical Chemistry Chemical Physics, 1999, 1, 2083-2091.	2.8	41
178	Formation of Surface Micelles from Adsorbed Asymmetric Block Copolymers:Â A Monte Carlo Study. Langmuir, 1999, 15, 3232-3241.	3.5	18
179	Monte Carlo simulation of micelle formation in block copolymer solutions. Macromolecular Theory and Simulations, 1998, 7, 649-658.	1.4	47
180	A polymer chain trapped between two parallel repulsive walls: A Monte-Carlo test of scaling behavior. European Physical Journal B, 1998, 3, 477-484.	1.5	82

#	Article	IF	CITATIONS
181	Computational confirmation of scaling predictions for equilibrium polymers. Europhysics Letters, 1998, 41, 291-296.	2.0	26
182	Tracer diffusion in a random barrier model: The crossover from static to dynamic disorder. Physical Review E, 1998, 58, 4299-4306.	2.1	2
183	Biased random walk in energetically disordered lattices. Physical Review E, 1998, 58, 2788-2795.	2.1	8
184	Dynamical Monte Carlo study of equilibrium polymers: Static properties. Journal of Chemical Physics, 1998, 109, 834-845.	3.0	93
185	Dewetting of thin polymer films adsorbed on solid substrates: A Monte Carlo simulation of the early stages. Journal of Chemical Physics, 1997, 106, 1978-1989.	3.0	60
186	Monte Carlo study of the molecular-weight distribution of living polymers. Physical Review E, 1997, 55, 2020-2022.	2.1	14
187	Effect of temperature on biased random walks in disordered media. Physical Review E, 1997, 56, R29-R31.	2.1	12
188	Polymer chain in a flow through a porous medium: A Monte Carlo simulation. Physical Review E, 1997, 56, 7043-7052.	2.1	9
189	Diffusion of a polymer chain in porous media. Physical Review E, 1997, 55, 1704-1712.	2.1	34
190	Monomer-mediated relaxation in living polymers. Physical Review E, 1997, 56, 1946-1953.	2.1	26
191	Crossover Dynamics for Polymer Simulation in Porous Media. Physical Review Letters, 1997, 79, 2356-2358.	7.8	23
192	Semidilute and Concentrated Polymer Solutions near Attractive Walls:  Dynamic Monte Carlo Simulation of Density and Pressure Profiles of a Coarse-Grained Model. Macromolecules, 1997, 30, 1194-1204.	4.8	71
193	A monte carlo lattice study of living polymers in a confined geometry. Macromolecular Theory and Simulations, 1997, 6, 1177-1190.	1.4	17
194	Inter-Chain Structure Factors of Flexible Polymers in Solutions: A Monte Carlo Investigation. Journal De Physique II, 1997, 7, 1123-1139.	0.9	2
195	Static and Dynamic Properties of Adsorbed Chains at Surfaces:Â Monte Carlo Simulation of a Bead-Spring Model. Macromolecules, 1996, 29, 343-354.	4.8	178
196	Simulation Studies on the Dynamics of Polymers at Interfaces. Annual Review of Materials Research, 1996, 26, 107-134.	5.5	74
197	Dynamics of Polymer Chains Confined in Slit-Like Pores. Journal De Physique II, 1996, 6, 21-31.	0.9	39
198	Polymer solutions confined in slit-like pores with attractive walls: An off-lattice Monte Carlo study of static properties and chain dynamics. Journal of Computer-Aided Materials Design, 1996, 2, 167-181.	0.7	19

#	Article	IF	CITATIONS
199	Thermodynamic functions of both simple (monomeric) and polymeric melts: MFA approach and Monte Carlo simulation. Journal of Macromolecular Science - Physics, 1996, 35, 763-794.	1.0	13
200	Adsorption of living polymers on a solid surface: A Monte Carlo simulation. Journal of Chemical Physics, 1996, 104, 9161-9168.	3.0	30
201	A Monte Carlo study of diffusion in "living polymers". Europhysics Letters, 1996, 33, 341-346.	2.0	11
202	Monte Carlo study of semiflexible living polymers. Physical Review E, 1995, 52, 6431-6441.	2.1	46
203	Role of percolation in diffusion on random lattices. Physical Review E, 1995, 52, 3570-3576.	2.1	20
204	Monte Carlo study of living polymers with the bond-fluctuation method. Physical Review E, 1995, 51, 5905-5910.	2.1	51
205	Kinetics of Simple Reactions in a Dichotomic Barrier Model. Physical Review Letters, 1995, 75, 3954-3957.	7.8	2
206	Dependence of the diffusion coefficient on the energy distribution of random barriers. Physical Review E, 1995, 52, 3623-3631.	2.1	34
207	Spinodal decomposition in adiabatically closed systems: Self-similarity. Phase Transitions, 1995, 54, 193-201.	1.3	4
208	A Monte Carlo Study of Thermodynamic Relaxation in Living Polymers. Journal De Physique II, 1995, 5, 343-347.	0.9	9
209	Spinodal decomposition in adiabatically closed systems: A possible key for the understanding of its general scenario. Phase Transitions, 1994, 48, 237-253.	1.3	7
210	Anomalous Diffusion and Relaxation of Collapsed Polymer Chains. Europhysics Letters, 1994, 26, 671-676.	2.0	38
211	Diffusion of single particles in cellular media. Physical Review E, 1994, 50, 4636-4645.	2.1	6
212	Polymer chains confined into tubes with attractive walls: A Monte Carlo simulation. Macromolecular Theory and Simulations, 1994, 3, 305-323.	1.4	67
213	Osmotic pressure, atomic pressure and the virial equation of state of polymer solutions: Monte Carlo simulations of a bead-spring model. Macromolecular Theory and Simulations, 1994, 3, 915-929.	1.4	44
214	Monte Carlo study of spinodal decomposition in adiabatically closed systems. European Physical Journal B, 1994, 94, 101-108.	1.5	5
215	Random Walk in Cellular Media. Langmuir, 1994, 10, 4698-4702.	3.5	1
216	Phase transitions in polydisperse polymer melts. Polymer, 1993, 34, 362-368.	3.8	25

#	Article	IF	CITATIONS
217	Offâ€lattice Monte Carlo simulation of dilute and concentrated polymer solutions under theta conditions. Journal of Chemical Physics, 1993, 99, 4786-4798.	3.0	145
218	A new offâ€lattice Monte Carlo model for polymers: A comparison of static and dynamic properties with the bondâ€fluctuation model and application to random media. Journal of Chemical Physics, 1993, 98, 6526-6539.	3.0	96
219	Diffusion in a random medium: A Monte Carlo study. Physical Review E, 1993, 47, 2303-2307.	2.1	30
220	Formation of cracks from kinks in a Frenkel-Kontorova model with anharmonic interactions. Physical Review B, 1992, 45, 10348-10355.	3.2	7
221	A grand ensemble Monte Carlo study of metal adsorption on a (110) bcc substrate. Surface Science, 1992, 264, 455-466.	1.9	7
222	Destruction of Solitons in Frenkel — Kontorova Models with Anharmonic Interactions. NATO ASI Series Series B: Physics, 1992, , 139-152.	0.2	0
223	Roughening of quasicrystal interface in two dimensions. Solid State Communications, 1991, 80, 299-302.	1.9	Ο
224	Spinodal decomposition in adiabatically closed systems: theory. Physics Letters, Section A: General, Atomic and Solid State Physics, 1991, 158, 307-312.	2.1	14
225	Kinetics of domain growth in systems with thermal gradient. European Physical Journal B, 1991, 84, 295-299.	1.5	2
226	Influence of potassium sodium tartrate on the initial stage of silver electrodeposition. Journal of Applied Electrochemistry, 1991, 21, 170-174.	2.9	23
227	A model for adsorption of O on Mo(110): Phase transitions with nonuniversal behavior. Journal of Chemical Physics, 1991, 94, 3958-3973.	3.0	37
228	Solitary waves in a Frenkel-Kontorova model with non-convex interactions. Physica D: Nonlinear Phenomena, 1990, 41, 262-274.	2.8	14
229	Interaction of dislocations with a local defect in an atomic chain with a nonconvex interparticle potential. Physical Review B, 1990, 41, 4240-4246.	3.2	10
230	Breakup threshold of solitons in systems with nonconvex interactions. Physical Review B, 1990, 42, 6727-6729.	3.2	12
231	Electrochemical nucleation of mercury on platinum in the presence of organic additives. Journal of Applied Electrochemistry, 1989, 19, 819-822.	2.9	7
232	Monte Carlo study of Cu adsorbed on W(110). Surface Science, 1989, 222, 163-180.	1.9	7
233	Monte-Carlo simulation of the Cahn-Hillard model of spinodal decomposition. Acta Metallurgica, 1988, 36, 377-383.	2.1	40
234	Nucleation and growth kinetics of Ag7NO11 on a platinum single crystal electrode. Journal of Applied Electrochemistry, 1988, 18, 614-618.	2.9	24

#	Article	IF	CITATIONS
235	Effect of disorder on diffusion and viscosity in condensed systems. Journal of Non-Crystalline Solids, 1988, 104, 253-260.	3.1	237
236	Frenkel-Kontorova model with anharmonic interactions. Physical Review B, 1988, 38, 2808-2812.	3.2	17
237	Dynamics of the formation of ordered domains out of initially disordered configurations. Lecture Notes in Physics, 1987, , 154-189.	0.7	7
238	Frenkel-Kontorova model with anharmonic interactions. Physical Review B, 1986, 33, 2062-2065.	3.2	15
239	Monte Carlo Study of a Lattice Gas Model with Nonadditive Lateral Interactions. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1986, 90, 267-268.	0.9	0
240	Finite-size scaling analysis of the ?4 field theory on the square lattice. Journal of Statistical Physics, 1986, 44, 749-784.	1.2	72
241	Fluctuations and lack of self-averaging in the kinetics of domain growth. European Physical Journal B, 1986, 63, 521-535.	1.5	183
242	Theory of epitaxy in a Frank-van der Merwe model with anharmonic interactions. Thin Solid Films, 1985, 126, 83-93.	1.8	15
243	The effect of realistic forces in finite epitaxial islands: Equilibrium structure, stability limits and substrate-induced dissociation of migrating clusters. Surface Science, 1985, 156, 392-403.	1.9	11
244	Monte Carlo study of a lattice gas model with non- additive lateral interactions. Surface Science, 1985, 164, 1-18.	1.9	38
245	The effect of anharmonicity in epitaxial interfaces. Surface Science, 1984, 145, 313-328.	1.9	27
246	The effect of anharmonicity in epitaxial interfaces. Surface Science, 1984, 136, 503-518.	1.9	38
247	The effect of anharmonicity in epitaxial interfaces. Surface Science, 1984, 136, 519-531.	1.9	37
248	Heat Capacity of Diatomic Molecules Adsorbed on a Periodic Substrate and the Localized-to-Mobile Transition. Physica Status Solidi A, 1983, 79, 301-308.	1.7	1
249	On the Influence of Amorphization on Atomic Diffusion in Condensed Systems. Physica Status Solidi (B): Basic Research, 1983, 120, 123-130.	1.5	14
250	2-D phase transitions. Electrochimica Acta, 1983, 28, 941-946.	5.2	10
251	The quasichemical approximation for a lattice gas model with nonadditive lateral interactions. Journal of Chemical Physics, 1983, 78, 1994-1998.	3.0	26
252	Temperature dependence of the configurational entropy of undercooled melts and the nature of glass transition. Journal of Macromolecular Science - Physics, 1982, 21, 583-615.	1.0	25

#	Article	IF	CITATIONS
253	2D Phase Transitions at High Densities. Physica Status Solidi A, 1982, 73, 339-349.	1.7	3
254	A unified model description of mobile and localized adsorption. Surface Science, 1981, 108, 25-37.	1.9	25
255	A unified model description of mobile and localized adsorption. Surface Science, 1981, 108, 38-48.	1.9	16
256	Thermodynamic Behaviour of a Simple Liquid—MFA with non-additive Lateral Interactions. Physics and Chemistry of Liquids, 1981, 11, 25-46.	1.2	7
257	Thomasâ€Fermi Approximation for the Valence Electron Densities in Cubic Semiconductors and Insulators. Physica Status Solidi (B): Basic Research, 1981, 108, 511-520.	1.5	15
258	Thirdâ€Order Contribution to the Effective Ion–Ion Interaction and Formation of Angular Forces in Crystalline Solids. I. General Formulation of the Expression for the Total Energy. Physica Status Solidi (B): Basic Research, 1978, 87, 227-237.	1.5	8
259	Thirdâ€Order Contribution to the Effective Ion–Ion Interaction and Formation of Angular Forces in Crystalline Solids. II. Application to Tetrahedral Solids. Physica Status Solidi (B): Basic Research, 1978, 87, 473-478.	1.5	1
260	Frequency―and waveâ€vectorâ€dependent dielectric function of a model semiconductor. Physica Status Solidi (B): Basic Research, 1978, 90, 679-688.	1.5	15
261	The quadratic response of a fermi gas. Buildingâ€up of the covalent bonding in zineblende semiconductors. A nondiagonal density matrix treatment. Physica Status Solidi (B): Basic Research, 1977, 79, 549-558.	1.5	21
262	The quadratic response of a Fermi gas: Electronic charge density of valence electrons in zincblende semiconductors. Physica Status Solidi (B): Basic Research, 1976, 77, 571-579.	1.5	25