
Yuecheng Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8134141/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coherent laser detection of the femtowatt-level frequency-shifted optical feedback based on a DFB fiber laser. Optics Letters, 2021, 46, 1229.	3.3	6
2	Genetic-algorithm-assisted coherent enhancement absorption in scattering media by exploiting transmission and reflection matrices. Optics Express, 2021, 29, 20353.	3.4	4
3	Single-shot ultrasound-modulated optical tomography with enhanced speckle contrast. Optics Letters, 2021, 46, 3095.	3.3	5
4	Characterization of the spectral memory effect of scattering media. Optics Express, 2021, 29, 26944.	3.4	7
5	Imaging biological tissue with high-throughput single-pixel compressive holography. Nature Communications, 2021, 12, 4712.	12.8	34
6	Switching between singular points and exceptional-point-enhanced sensing in non-Hermitian photonic structures. , 2021, , .		0
7	Modeling of iterative time-reversed ultrasonically encoded optical focusing in a reflection mode. Optics Express, 2021, 29, 30961.	3.4	3
8	An open-source, accurate, and iterative calibration method for liquid-crystal-based spatial light modulators. Optics Communications, 2021, 495, 127108.	2.1	2
9	Generalizing the Gerchberg–Saxton algorithm for retrieving complex optical transmission matrices. Photonics Research, 2021, 9, 34.	7.0	42
10	Feedback-assisted transmission matrix measurement of a multimode fiber in a referenceless system. Optics Letters, 2021, 46, 5542.	3.3	9
11	Switching between singular points in non-PT-symmetric multilayer structures using phase-change materials. Optics Express, 2021, 29, 454.	3.4	1
12	Harnessing a multi-dimensional fibre laser using genetic wavefront shaping. Light: Science and Applications, 2020, 9, 149.	16.6	44
13	Real-time frequency-encoded spatiotemporal focusing through scattering media using a programmable 2D ultrafine optical frequency comb. Science Advances, 2020, 6, eaay1192.	10.3	34
14	Retrieving the optical transmission matrix of a multimode fiber using the extended Kalman filter. Optics Express, 2020, 28, 9487.	3.4	48
15	Delivering targeted color light through a multimode fiber by field synthesis. Optics Express, 2020, 28, 19700.	3.4	6
16	Statistically driven model for efficient analysis of few-photon transport in waveguide quantum electrodynamics. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 420.	2.1	1
17	Non-PT-symmetric Two-layer Waveguides for Exceptional-point-enhanced Optical Devices. , 2020, , .		0
18	A thorough study on genetic algorithms in feedback-based wavefront shaping. Journal of Innovative Optical Health Sciences, 2019, 12, .	1.0	26

YUECHENG SHEN

#	Article	IF	CITATIONS
19	Focusing light inside live tissue using reversibly switchable bacterial phytochrome as a genetically encoded photochromic guide star. Science Advances, 2019, 5, eaay1211.	10.3	26
20	Optimization of photonic nanojets generated by multilayer microcylinders with a genetic algorithm. Optics Express, 2019, 27, 1310.	3.4	50
21	Controlling 1550-nm light through a multimode fiber using a Hadamard encoding algorithm. Optics Express, 2019, 27, 5570.	3.4	30
22	An ultranarrow photonic nanojet formed by an engineered two-layer microcylinder of high refractive-index materials. Optics Express, 2019, 27, 9178.	3.4	34
23	Non-PT-symmetric two-layer cylindrical waveguide for exceptional-point-enhanced optical devices. Optics Express, 2019, 27, 37494.	3.4	17
24	Efficient glare suppression with Hadamard-encoding-algorithm-based wavefront shaping. Optics Letters, 2019, 44, 4067.	3.3	8
25	Synthetic Bessel light needle for extended depth-of-field microscopy. Applied Physics Letters, 2018, 113, 181104.	3.3	17
26	Dichroism-sensitive photoacoustic computed tomography. Optica, 2018, 5, 495.	9.3	29
27	Switching photonic nanostructures between cloaking and superscattering regimes using phase-change materials [Invited]. Optical Materials Express, 2018, 8, 1672.	3.0	17
28	Exact approach for spatiotemporal dynamics of spontaneous emissions in waveguide quantum electrodynamic systems. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 607.	2.1	10
29	Time-reversed ultrasonically encoded optical focusing through highly scattering ex vivo human cataractous lenses. Journal of Biomedical Optics, 2018, 23, 1.	2.6	10
30	High-speed alignment optimization of digital optical phase conjugation systems based on autocovariance analysis in conjunction with orthonormal rectangular polynomials. Journal of Biomedical Optics, 2018, 24, 1.	2.6	12
31	Ultrafast polarization bio-imaging based on coherent detection and time-stretch techniques. Biomedical Optics Express, 2018, 9, 6556.	2.9	8
32	Using phase-change materials to switch the direction of reflectionless light propagation in non-PT-symmetric structures. , 2018, , .		1
33	Suppressing excitation effects in microwave induced thermoacoustic tomography by multi-view Hilbert transformation. Applied Physics Letters, 2017, 110, .	3.3	18
34	Optical focusing through biological tissue and tissue-mimicking phantoms up to 9.6 centimeters thick with digital optical phase conjugation. Proceedings of SPIE, 2017, , .	0.8	0
35	Unidirectional reflectionless light propagation at exceptional points. Nanophotonics, 2017, 6, 977-996.	6.0	89
36	Motionless volumetric photoacoustic microscopy with spatially invariant resolution. Nature Communications, 2017, 8, 780.	12.8	68

YUECHENG SHEN

#	Article	IF	CITATIONS
37	Multiview Hilbert transformation in full-ring transducer array-based photoacoustic computed tomography. Journal of Biomedical Optics, 2017, 22, 076017.	2.6	34
38	Homogenizing microwave illumination in thermoacoustic tomography by a linear-to-circular polarizer based on frequency selective surfaces. Applied Physics Letters, 2017, 111, .	3.3	25
39	High-speed single-shot optical focusing through dynamic scattering media with full-phase wavefront shaping. Applied Physics Letters, 2017, 111, 221109.	3.3	12
40	Focusing light through scattering media by polarization modulation based generalized digital optical phase conjugation. Applied Physics Letters, 2017, 111, 201108.	3.3	40
41	Sub-Nyquist sampling boosts targeted light transport through opaque scattering media. Optica, 2017, 4, 97.	9.3	27
42	Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation. Optica, 2017, 4, 280.	9.3	127
43	Switching of the direction of reflectionless light propagation at exceptional points in non-PT-symmetric structures using phase-change materials. Optics Express, 2017, 25, 27283.	3.4	26
44	Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation (Conference Presentation). , 2017, , .		0
45	Bit-efficient sub-millisecond wavefront measurement using a lock-in camera for time-reversal based optical focusing inside scattering media (Conference Presentation). , 2016, , .		1
46	Lock-in camera based heterodyne holography for ultrasound-modulated optical tomography inside dynamic scattering media. Applied Physics Letters, 2016, 108, 231106.	3.3	22
47	Focusing light through biological tissue and tissue-mimicking phantoms up to 9.6Âcm in thickness with digital optical phase conjugation. Journal of Biomedical Optics, 2016, 21, 085001.	2.6	55
48	Bit-efficient, sub-millisecond wavefront measurement using a lock-in camera for time-reversal based optical focusing inside scattering media. Optics Letters, 2016, 41, 1321.	3.3	27
49	Focusing light through scattering media by full-polarization digital optical phase conjugation. Optics Letters, 2016, 41, 1130.	3.3	59
50	Photonic-Fock-state scattering in a waveguide-QED system and their correlation functions. Physical Review A, 2015, 92, .	2.5	37
51	Ultralong photonic nanojet formed by a two-layer dielectric microsphere. Optics Letters, 2014, 39, 4120.	3.3	93
52	Deep subwavelength imaging using multiple correlated narrow slits. , 2014, , .		0
53	Deep subwavelength optical imaging using correlated nano-torches. Applied Physics Letters, 2013, 103, 201119.	3.3	1
54	Numerical investigation of Rayleigh nanoparticlesensing using a whispering-gallery-mode resonator. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 2897.	2.1	2

YUECHENG SHEN

#	Article	IF	CITATIONS
55	Statistical theory of nanoparticle sensing using a whispering-gallery-mode resonator. Physical Review A, 2012, 85, .	2.5	10
56	Nanoparticle sensing using whispering-gallery-mode resonators: Plasmonic and Rayleigh scatterers. , 2012, , .		1
57	Nanoparticle sensing using whispering-gallery-mode resonators: Plasmonic and Rayleigh scatterers. Physical Review A, 2012, 85, .	2.5	30
58	Single-photon diode by exploiting the photon polarization in a waveguide. , 2012, , .		0
59	Single-Photon Diode by Exploiting the Photon Polarization in a Waveguide. Physical Review Letters, 2011, 107, 173902.	7.8	87
60	Topological edge states at singular points in non-Hermitian plasmonic systems. Photonics Research, 0, , .	7.0	6