Jian-Rong Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8132769/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Advances in the enzymatic biofuel cell powered sensing systems for tumor diagnosis and regulation. TrAC - Trends in Analytical Chemistry, 2022, 146, 116476.	11.4	9
2	Direct Formation of Colloidal All-Inorganic Metal Nanocrystals from Magic-Size Clusters. ACS Applied Materials & Interfaces, 2022, , .	8.0	5
3	Layer-by-layer construction of <i>in situ</i> formed polypyrrole and bacterial cells as capacitive bioanodes for paper-based microbial fuel cells. Journal of Materials Chemistry A, 2022, 10, 4915-4925.	10.3	16
4	CRISPR Systemâ€Linked Selfâ€Assembling Nanoplatforms for Inspection and Screening of Gastric Cancer Stem Cells. Small, 2022, 18, e2104622.	10.0	7
5	<i>In situ</i> formed N-containing copper nanoparticles: a high-performance catalyst toward carbon monoxide electroreduction to multicarbon products with high faradaic efficiency and current density. Nanoscale, 2022, 14, 7262-7268.	5.6	10
6	Damage-Free and Time-Saving Platform Integrated by a Flow Membrane Separation Device and a Dual-Target Biofuel Cell-Based Biosensor for Continuous Sorting and Detection of Exosomes and Host Cells in Human Serum. Analytical Chemistry, 2022, 94, 7722-7730.	6.5	3
7	Bioâ€Coreactantâ€Enhanced Electrochemiluminescence Microscopy of Intracellular Structure and Transport. Angewandte Chemie - International Edition, 2021, 60, 4907-4914.	13.8	96
8	Bioâ€Coreactantâ€Enhanced Electrochemiluminescence Microscopy of Intracellular Structure and Transport. Angewandte Chemie, 2021, 133, 4957-4964.	2.0	23
9	Layer-by-layer assembly of Au and CdS nanoparticles on the surface of bacterial cells for photo-assisted bioanodes in microbial fuel cells. Journal of Materials Chemistry B, 2021, 9, 1638-1646.	5.8	18
10	Self-assembled nanomaterials for biosensing and therapeutics: recent advances and challenges. Analyst, The, 2021, 146, 2807-2817.	3.5	9
11	Catalytic route electrochemiluminescence microscopy of cell membranes with nitrogen-doped carbon dots as nano-coreactants. Chemical Communications, 2021, 57, 2168-2171.	4.1	37
12	Visualization of an Accelerated Electrochemical Reaction under an Enhanced Electric Field. Research, 2021, 2021, 1742919.	5.7	18
13	Simultaneous and Spatial Quantification of Telomerase Activity and DNA Methylation in Living Cells by a Deformable Satellite Nanocapsule. CCS Chemistry, 2021, 3, 1231-1244.	7.8	3
14	Enzymatic Biofuel Cell: Opportunities and Intrinsic Challenges in Futuristic Applications. Advanced Energy and Sustainability Research, 2021, 2, 2100031.	5.8	38
15	Label-Free Probing of Electron Transfer Kinetics of Single Microbial Cells on a Single-Layer Graphene via Structural Color Microscopy. Nano Letters, 2021, 21, 7823-7830.	9.1	3
16	Electrode Materials Engineering in Electrocatalytic CO ₂ Reduction: Energy Input and Conversion Efficiency. Advanced Materials, 2020, 32, e1903796.	21.0	87
17	Core/Satellite Structured Fe ₃ O ₄ /Au Nanocomposites Incorporated with Three-Dimensional Macroporous Graphene Foam as a High-Performance Anode for Microbial Fuel Cells. ACS Sustainable Chemistry and Engineering, 2020, 8, 1311-1318.	6.7	47
18	Superior efficient rechargeable lithium–air batteries using a bifunctional biological enzyme catalyst. Energy and Environmental Science, 2020, 13, 144-151.	30.8	13

#	Article	IF	CITATIONS
19	Electrogenerated Chemiluminescence in Submicrometer Wells for Very High-Density Biosensing. Analytical Chemistry, 2020, 92, 578-582.	6.5	18
20	Tuning Sn3O4 for CO2 reduction to formate with ultra-high current density. Nano Energy, 2020, 77, 105296.	16.0	65
21	A Course of Hands-On Nanopore Experiments for Undergraduates: Single-Molecule Detection with Portable Electrochemical Instruments. Journal of Chemical Education, 2020, 97, 4345-4354.	2.3	8
22	Efficient Blood-toleration Enzymatic Biofuel Cell <i>via In Situ</i> Protection of an Enzyme Catalyst. ACS Applied Materials & Interfaces, 2020, 12, 41429-41436.	8.0	28
23	Hydrogen Evolution Reaction Monitored by Electrochemiluminescence Blinking at Single-Nanoparticle Level. Nano Letters, 2020, 20, 5008-5016.	9.1	66
24	Quantitative Detection and Imaging of Multiple Biological Molecules in Living Cells for Cell Screening. ACS Sensors, 2020, 5, 1149-1157.	7.8	11
25	Electrocatalytic CO ₂ Reduction: Electrode Materials Engineering in Electrocatalytic CO ₂ Reduction: Energy Input and Conversion Efficiency (Adv. Mater. 27/2020). Advanced Materials, 2020, 32, 2070202.	21.0	25
26	Capture and selective release of multiple types of circulating tumor cells using smart DNAzyme probes. Chemical Science, 2020, 11, 1948-1956.	7.4	30
27	Trifunctional modification of individual bacterial cells for magnet-assisted bioanodes with high performance in microbial fuel cells. Journal of Materials Chemistry A, 2020, 8, 24515-24523.	10.3	13
28	Bioapplications of DNA nanotechnology at the solid–liquid interface. Chemical Society Reviews, 2019, 48, 4892-4920.	38.1	68
29	N,S-doped carbon dots as dual-functional modifiers to boost bio-electricity generation of individually-modified bacterial cells. Nano Energy, 2019, 63, 103875.	16.0	57
30	Fermi level-tuned optics of graphene for attocoulomb-scale quantification of electron transfer at single gold nanoparticles. Nature Communications, 2019, 10, 3849.	12.8	14
31	Highly Efficient Photoelectrochemical Reduction of CO ₂ at Low Applied Voltage Using 3D Co-Pi/BiVO ₄ /SnO ₂ Nanosheet Array Photoanodes. ACS Applied Materials & Interfaces, 2019, 11, 26024-26031.	8.0	41
32	An Improved Strategy for High-Quality Cesium Bismuth Bromine Perovskite Quantum Dots with Remarkable Electrochemiluminescence Activities. Analytical Chemistry, 2019, 91, 8607-8614.	6.5	66
33	Sustainable and Selfâ€Enhanced Electrochemiluminescent Ternary Suprastructures Derived from CsPbBr ₃ Perovskite Quantum Dots. Advanced Functional Materials, 2019, 29, 1902533.	14.9	50
34	Plasmon-enhanced cathodic reduction for accelerating electricity generation in visible-light-assisted microbial fuel cells. Nano Energy, 2019, 57, 94-100.	16.0	15
35	Steady-State Electrochemiluminescence at Single Semiconductive Titanium Dioxide Nanoparticles for Local Sensing of Single Cells. Analytical Chemistry, 2019, 91, 1121-1125.	6.5	42
36	<i>In situ</i> formation of large pore silica–MnO ₂ nanocomposites with H ⁺ /H ₂ O ₂ sensitivity for O ₂ -elevated photodynamic therapy and potential MR imaging. Chemical Communications, 2018, 54, 2962-2965.	4.1	36

#	Article	IF	CITATIONS
37	Acid-degradable gadolinium-based nanoscale coordination polymer: A potential platform for targeted drug delivery and potential magnetic resonance imaging. Nano Research, 2018, 11, 929-939.	10.4	22
38	Nitrogen-doped hollow carbon nanospheres for high-energy-density biofuel cells and self-powered sensing of microRNA-21 and microRNA-141. Nano Energy, 2018, 44, 95-102.	16.0	72
39	A glucose/O ₂ fuel cell-based self-powered biosensor for probing a drug delivery model with self-diagnosis and self-evaluation. Chemical Science, 2018, 9, 8482-8491.	7.4	36
40	Highly sensitive fluorescence quantification of intracellular telomerase activity by repeat G-rich DNA enhanced silver nanoclusters. Journal of Materials Chemistry B, 2018, 6, 4583-4591.	5.8	14
41	Light-Driven Nano-oscillators for Label-Free Single-Molecule Monitoring of MicroRNA. Nano Letters, 2018, 18, 3759-3765.	9.1	27
42	Ultrasensitive cathode photoelectrochemical immunoassay based on TiO2 photoanode-enhanced 3D Cu2O nanowire array photocathode and signal amplification by biocatalytic precipitation. Analytica Chimica Acta, 2018, 1027, 33-40.	5.4	26
43	Dynamically imaging collision electrochemistry of single electrochemiluminescence nano-emitters. Chemical Science, 2018, 9, 6167-6175.	7.4	83
44	Nanostructured material-based biofuel cells: recent advances and future prospects. Chemical Society Reviews, 2017, 46, 1545-1564.	38.1	258
45	A Fe ₃ O ₄ –carbon nanofiber/gold nanoparticle hybrid for enzymatic biofuel cells with larger power output. Journal of Materials Chemistry A, 2017, 5, 11026-11031.	10.3	18
46	Nearâ€Infrared Photothermally Activated DNAzyme–Gold Nanoshells for Imaging Metal Ions in Living Cells. Angewandte Chemie - International Edition, 2017, 56, 6798-6802.	13.8	177
47	Living and Conducting: Coating Individual Bacterial Cells with Inâ€Situ Formed Polypyrrole. Angewandte Chemie, 2017, 129, 10652-10656.	2.0	38
48	Living and Conducting: Coating Individual Bacterial Cells with Inâ€Situ Formed Polypyrrole. Angewandte Chemie - International Edition, 2017, 56, 10516-10520.	13.8	206
49	Graphene/Fe ₃ O ₄ Nanocomposites as Efficient Anodes to Boost the Lifetime and Current Output of Microbial Fuel Cells. Chemistry - an Asian Journal, 2017, 12, 308-313.	3.3	35
50	Rücktitelbild: Living and Conducting: Coating Individual Bacterial Cells with Inâ€Situ Formed Polypyrrole (Angew. Chem. 35/2017). Angewandte Chemie, 2017, 129, 10744-10744.	2.0	0
51	Visible-light-enhanced power generation in microbial fuel cells coupling with 3D nitrogen-doped graphene. Chemical Communications, 2017, 53, 9967-9970.	4.1	16
52	Imaging the transient heat generation of individual nanostructures with a mechanoresponsive polymer. Nature Communications, 2017, 8, 1498.	12.8	38
53	Evaluation of intracellular telomerase activity through cascade DNA logic gates. Chemical Science, 2017, 8, 174-180.	7.4	56
54	Inkjet-printed porous polyaniline gel as an efficient anode for microbial fuel cells. Journal of Materials Chemistry A, 2016, 4, 14555-14559.	10.3	64

4

#	Article	IF	CITATIONS
55	Coupling a DNA-Based Machine with Glucometer Readouts for Amplified Detection of Telomerase Activity in Cancer Cells. Scientific Reports, 2016, 6, 23504.	3.3	22
56	Cathode Photoelectrochemical Immunosensing Platform Integrating Photocathode with Photoanode. Analytical Chemistry, 2016, 88, 10352-10356.	6.5	118
57	A Targeted DNAzyme-Nanocomposite Probe Equipped with Built-in Zn2+ Arsenal for Combined Treatment of Gene Regulation and Drug Delivery. Scientific Reports, 2016, 6, 22737.	3.3	33
58	Bacteria-Affinity 3D Macroporous Graphene/MWCNTs/Fe ₃ O ₄ Foams for High-Performance Microbial Fuel Cells. ACS Applied Materials & Interfaces, 2016, 8, 16170-16177.	8.0	96
59	Enhanced Photoelectrochemical Immunosensing Platform Based on CdSeTe@CdS:Mn Core–Shell Quantum Dots-Sensitized TiO ₂ Amplified by CuS Nanocrystals Conjugated Signal Antibodies. Analytical Chemistry, 2016, 88, 3392-3399.	6.5	174
60	Ultrasensitive photoelectrochemical immunoassay for CA19-9 detection based on CdSe@ZnS quantum dots sensitized TiO 2 NWs/Au hybrid structure amplified by quenching effect of Ab 2 @V 2+ conjugates. Biosensors and Bioelectronics, 2016, 77, 339-346.	10.1	84
61	Highly luminescent and biocompatible near-infrared core–shell CdSeTe/CdS/C quantum dots for probe labeling tumor cells. Talanta, 2016, 146, 209-215.	5.5	13
62	Signal-on Photoelectrochemical Aptasensor for Adenosine Triphosphate Detection Based on Sensitization Effect of CdS:Mn@Ru(bpy) ₂ (dcbpy) Nanocomposites. Journal of Physical Chemistry C, 2016, 120, 15657-15665.	3.1	44
63	Ultrasensitive self-powered cytosensor. Nano Energy, 2016, 19, 541-549.	16.0	52
64	Design of an enzymatic biofuel cell with large power output. Journal of Materials Chemistry A, 2015, 3, 11511-11516.	10.3	60
65	A nitrogen-doped graphene/gold nanoparticle/formate dehydrogenase bioanode for high power output membrane-less formic acid/O ₂ biofuel cells. Analyst, The, 2015, 140, 1822-1826.	3.5	39
66	Sensitive Electrochemical Detection of Telomerase Activity Using Spherical Nucleic Acids Gold Nanoparticles Triggered Mimic-Hybridization Chain Reaction Enzyme-Free Dual Signal Amplification. Analytical Chemistry, 2015, 87, 3019-3026.	6.5	153
67	Single Gold@Silver Nanoprobes for Real-Time Tracing the Entire Autophagy Process at Single-Cell Level. Journal of the American Chemical Society, 2015, 137, 1903-1908.	13.7	111
68	A highly sensitive fluorescence assay for 2,4,6-trinitrotoluene using amine-capped silicon quantum dots as a probe. Analytical Methods, 2015, 7, 1732-1737.	2.7	60
69	A ternary hybrid of carbon nanotubes/graphitic carbon nitride nanosheets/gold nanoparticles used as robust substrate electrodes in enzyme biofuel cells. Chemical Communications, 2015, 51, 14735-14738.	4.1	34
70	An"ON–OFF―switchable power output of enzymatic biofuel cell controlled by thermal-sensitive polymer. Biosensors and Bioelectronics, 2015, 74, 142-149.	10.1	32
71	Graphene/Au composites as an anode modifier for improving electricity generation in Shewanella-inoculated microbial fuel cells. Analytical Methods, 2015, 7, 4640-4644.	2.7	33
72	"Signal-On―Photoelectrochemical Biosensor for Sensitive Detection of Human T-Cell Lymphotropic Virus Type II DNA: Dual Signal Amplification Strategy Integrating Enzymatic Amplification with Terminal Deoxynucleotidyl Transferase-Mediated Extension. Analytical Chemistry, 2015, 87, 4949-4956.	6.5	108

#	Article	IF	CITATIONS
73	Ultrasensitive self-powered cytosensors based on exogenous redox-free enzyme biofuel cells as point-of-care tools for early cancer diagnosis. Chemical Communications, 2015, 51, 16763-16766.	4.1	36
74	A new signal amplification strategy of photoelectrochemical immunoassay for highly sensitive interleukin-6 detection based on TiO2/CdS/CdSe dual co-sensitized structure. Biosensors and Bioelectronics, 2014, 59, 45-53.	10.1	128
75	Synthesis and characterization of a highly stable poly (3,4-ethylenedioxythiophene)-gold nanoparticles composite film and its application to electrochemical dopamine sensors. RSC Advances, 2014, 4, 8415-8420.	3.6	13
76	NADH dehydrogenase-like behavior of nitrogen-doped graphene and its application in NAD+-dependent dehydrogenase biosensing. Biosensors and Bioelectronics, 2014, 62, 170-176.	10.1	35
77	Manganese-doped ZnS quantum dots as a phosphorescent probe for use in the bi-enzymatic determination of organophosphorus pesticides. Mikrochimica Acta, 2014, 181, 1591-1599.	5.0	24
78	Polyaniline networks grown on graphene nanoribbons-coated carbon paper with a synergistic effect for high-performance microbial fuel cells. Journal of Materials Chemistry A, 2013, 1, 12587.	10.3	138
79	Aptamer-functionalized silver nanoclusters-mediated cell type-specific siRNA delivery and tracking. Chemical Science, 2013, 4, 3514.	7.4	43
80	A Graphene/Poly(3,4â€ethylenedioxythiophene) Hybrid as an Anode for Highâ€Performance Microbial Fuel Cells. ChemPlusChem, 2013, 78, 823-829.	2.8	77
81	Self-assembled Mn-doped ZnSe quantum dot–methyl viologen nanohybrids as an OFF–ON fluorescent probe for time-resolved fluorescence detection of tiopronin. Analytical Methods, 2013, 5, 4321.	2.7	12
82	Highly luminescent glutathione-capped ZnS : Mn/ZnS core/shell doped quantum dots for targeted mannosyl groups expression on the cell surface. Analytical Methods, 2013, 5, 5929.	2.7	21
83	Microwaveâ€Assisted Inâ€Situ Synthesis of Graphene/PEDOT Hybrid and Its Application in Supercapacitors. ChemPlusChem, 2013, 78, 227-234.	2.8	61
84	One-Pot Synthesis of Aptamer-Functionalized Silver Nanoclusters for Cell-Type-Specific Imaging. Analytical Chemistry, 2012, 84, 4140-4146.	6.5	188
85	A Facile Microwave Avenue to Electrochemiluminescent Two olor Graphene Quantum Dots. Advanced Functional Materials, 2012, 22, 2971-2979.	14.9	768
86	Toward the Early Evaluation of Therapeutic Effects: An Electrochemical Platform for Ultrasensitive Detection of Apoptotic Cells. Analytical Chemistry, 2011, 83, 7902-7909.	6.5	77
87	Fabrication of gold nanoparticles on bilayer graphene for glucose electrochemical biosensing. Journal of Materials Chemistry, 2011, 21, 7604.	6.7	141
88	Fabrication of Graphene–Quantum Dots Composites for Sensitive Electrogenerated Chemiluminescence Immunosensing. Advanced Functional Materials, 2011, 21, 869-878.	14.9	303
89	Improved Current-Monitoring Method for Low Electroosmotic Flow Measurement in Modified Microchip. Chromatographia, 2009, 69, 897-901.	1.3	2
90	ELECTROCHEMICAL BEHAVIOR OF AMORPHOUS HYDROUS RUTHENIUM OXIDE/ACTIVE CARBON COMPOSITE ELECTRODES FOR SUPER-CAPACITOR. International Journal of Modern Physics B, 2002, 16, 4479-4483.	2.0	23

#	Article	IF	CITATIONS
91	Differential pulse voltammetric indirect determination of aluminium in drinking waters, blood, urine, hair, and medicament samples using l-dopa under alkaline conditions. Analyst, The, 2000, 125, 1299-1302.	3.5	22