
Monica Bettencourt-Dias

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8132549/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Myosin VI regulates ciliogenesis by promoting the turnover of the centrosomal/satellite protein OFD1. EMBO Reports, 2022, 23, e54160.	4.5	7
2	Plk4 triggers autonomous de novo centriole biogenesis and maturation. Journal of Cell Biology, 2021, 220, .	5.2	22
3	A first-takes-all model of centriole copy number control based on cartwheel elongation. PLoS Computational Biology, 2021, 17, e1008359.	3.2	2
4	Patterns of selection against centrosome amplification in human cell lines. PLoS Computational Biology, 2021, 17, e1008765.	3.2	8
5	Biophysical and Quantitative Principles of Centrosome Biogenesis and Structure. Annual Review of Cell and Developmental Biology, 2021, 37, 43-63.	9.4	15
6	The 3D architecture and molecular foundations of de novo centriole assembly via bicentrioles. Current Biology, 2021, 31, 4340-4353.e7.	3.9	8
7	Phenotypic Screen with TSC-Deficient Neurons Reveals Heat-Shock Machinery as a Druggable Pathway for mTORC1 and Reduced Cilia. Cell Reports, 2020, 31, 107780.	6.4	16
8	Evolution of centriole assembly. Current Biology, 2020, 30, R494-R502.	3.9	28
9	Pericentriolar material. Current Biology, 2020, 30, R687-R689.	3.9	10
10	Studying Centriole Duplication and Elongation in Human Cells. Methods in Molecular Biology, 2020, 2101, 147-162.	0.9	0
11	The Cell Cycle, Cytoskeleton and Cancer. Learning Materials in Biosciences, 2019, , 51-74.	0.4	1
12	Pan-cancer association of a centrosome amplification gene expression signature with genomic alterations and clinical outcome. PLoS Computational Biology, 2019, 15, e1006832.	3.2	35
13	Pericentrin-mediated SAS-6 recruitment promotes centriole assembly. ELife, 2019, 8, .	6.0	22
14	Building the right centriole for each cell type. Journal of Cell Biology, 2018, 217, 823-835.	5.2	84
15	Over-elongation of centrioles in cancer promotes centriole amplification and chromosome missegregation. Nature Communications, 2018, 9, 1258.	12.8	113
16	PLK4 is a microtubule-associated protein that self assembles promoting <i>de novo</i> MTOC formation. Journal of Cell Science, 2018, 132, .	2.0	40
17	Centrosome amplification arises before neoplasia and increases upon p53 loss in tumorigenesis. Journal of Cell Biology, 2018, 217, 2353-2363.	5.2	61
18	Centrosome Remodelling in Evolution. Cells, 2018, 7, 71.	4.1	46

#	Article	IF	CITATIONS
19	Differential regulation of transition zone and centriole proteins contributes to ciliary base diversity. Nature Cell Biology, 2018, 20, 928-941.	10.3	78
20	Centrosome Assembly: Reconstructing the Core Cartwheel Structure InÂVitro. Current Biology, 2017, 27, R606-R609.	3.9	1
21	Maintaining centrosomes and cilia. Journal of Cell Science, 2017, 130, 3789-3800.	2.0	43
22	Noncanonical Biogenesis of Centrioles and Basal Bodies. Cold Spring Harbor Symposia on Quantitative Biology, 2017, 82, 123-135.	1.1	21
23	Drosophila melanogaster as a model for basal body research. Cilia, 2016, 5, 22.	1.8	55
24	A mechanism for the elimination of the female gamete centrosome in <i>Drosophila melanogaster</i> . Science, 2016, 353, aaf4866.	12.6	90
25	CDK1 Prevents Unscheduled PLK4-STIL Complex Assembly in Centriole Biogenesis. Current Biology, 2016, 26, 1127-1137.	3.9	68
26	Methods to Study Centrosomes and Cilia in Drosophila. Methods in Molecular Biology, 2016, 1454, 215-236.	0.9	5
27	Distinct mechanisms eliminate mother and daughter centrioles in meiosis of starfish oocytes. Journal of Cell Biology, 2016, 212, 815-827.	5.2	48
28	CYR61 and TAZ Upregulation and Focal Epithelial to Mesenchymal Transition May Be Early Predictors of Barrett's Esophagus Malignant Progression. PLoS ONE, 2016, 11, e0161967.	2.5	6
29	The architectural landscape of diverse ciliary functions. Cilia, 2015, 4, .	1.8	0
30	Rootletin organizes the ciliary rootlet to achieve neuron sensory function in <i>Drosophila</i> . Journal of Cell Biology, 2015, 211, 435-453.	5.2	63
31	PLK4 trans-Autoactivation Controls Centriole Biogenesis in Space. Developmental Cell, 2015, 35, 222-235.	7.0	77
32	Mapping molecules to structure: unveiling secrets of centriole and cilia assembly with near-atomic resolution. Current Opinion in Cell Biology, 2014, 26, 96-106.	5.4	62
33	Polo-like kinases: structural variations lead to multiple functions. Nature Reviews Molecular Cell Biology, 2014, 15, 433-452.	37.0	377
34	Q&A: Who needs a centrosome?. BMC Biology, 2013, 11, 28.	3.8	27
35	Regulation of Autophosphorylation Controls PLK4 Self-Destruction and Centriole Number. Current Biology, 2013, 23, 2245-2254.	3.9	110
36	A structural road map to unveil basal body composition and assembly. EMBO Journal, 2012, 31, 519-521.	7.8	3

Monica Bettencourt-Dias

#	Article	IF	CITATIONS
37	Polo-like kinase 4 controls centriole duplication but does not directly regulate cytokinesis. Molecular Biology of the Cell, 2012, 23, 1838-1845.	2.1	35
38	BLD10/CEP135 Is a Microtubule-Associated Protein that Controls the Formation of the Flagellum Central Microtubule Pair. Developmental Cell, 2012, 23, 412-424.	7.0	84
39	Polo Boxes Come out of the Crypt: A New View of PLK Function and Evolution. Structure, 2012, 20, 1801-1804.	3.3	14
40	Polo Boxes Come out of the Crypt: A New View of PLK Function and Evolution. Structure, 2012, 20, 2191.	3.3	0
41	Deconstructing the centriole: structure and number control. Current Opinion in Cell Biology, 2012, 24, 4-13.	5.4	117
42	Tracing the origins of centrioles, cilia, and flagella. Journal of Cell Biology, 2011, 194, 165-175.	5.2	335
43	Centrosomes and cilia in human disease. Trends in Genetics, 2011, 27, 307-315.	6.7	323
44	Tracing the origins of centrioles, cilia, and flagella. Journal of Cell Biology, 2011, 195, 341-341.	5.2	8
45	Centrioles: active players or passengers during mitosis?. Cellular and Molecular Life Sciences, 2010, 67, 2173-2194.	5.4	88
46	Asterless is a scaffold for the onset of centriole assembly. Nature, 2010, 467, 714-718.	27.8	275
47	Candidate exome capture identifies mutation of SDCCAG8 as the cause of a retinal-renal ciliopathy. Nature Genetics, 2010, 42, 840-850.	21.4	295
48	Stepwise evolution of the centriole-assembly pathway. Journal of Cell Science, 2010, 123, 1414-1426.	2.0	202
49	MÃ ³ nica Bettencourt-Dias: Centered on centrioles. Journal of Cell Biology, 2010, 190, 710-711.	5.2	0
50	Microscopy Methods for the Study of Centriole Biogenesis and Function in Drosophila. Methods in Cell Biology, 2010, 97, 223-242.	1.1	3
51	γ-Tubulin-containing abnormal centrioles are induced by insufficient Plk4 in human HCT116 colorectal cancer cells. Journal of Cell Science, 2009, 122, 2014-2023.	2.0	20
52	The SCF/Slimb Ubiquitin Ligase Limits Centrosome Amplification through Degradation of SAK/PLK4. Current Biology, 2009, 19, 43-49.	3.9	226
53	From Zero to Many: Control of Centriole Number in Development and Disease. Traffic, 2009, 10, 482-498.	2.7	43
54	SnapShot: Centriole Biogenesis. Cell, 2009, 136, 188.e1-188.e2.	28.9	19

#	Article	IF	CITATIONS
55	RNAi in Drosophila S2 Cells as a Tool for Studying Cell Cycle Progression. Methods in Molecular Biology, 2009, 545, 39-62.	0.9	27
56	Double life of centrioles: CP110 in the spotlight. Trends in Cell Biology, 2008, 18, 8-11.	7.9	25
57	From centriole biogenesis to cellular function: Centrioles are essential for cell division at critical developmental stages. Cell Cycle, 2008, 7, 11-16.	2.6	67
58	Revisiting the Role of the Mother Centriole in Centriole Biogenesis. Science, 2007, 316, 1046-1050.	12.6	236
59	Centrosome biogenesis and function: centrosomics brings new understanding. Nature Reviews Molecular Cell Biology, 2007, 8, 451-463.	37.0	489
60	DSAS-6 Organizes a Tube-like Centriole Precursor, and Its Absence Suggests Modularity in Centriole Assembly. Current Biology, 2007, 17, 1465-1472.	3.9	172
61	Training Scientists in Communication Skills. , 2007, , 71-77.		1
62	SAK/PLK4 Is Required for Centriole Duplication and Flagella Development. Current Biology, 2005, 15, 2199-2207.	3.9	553
63	Genome-wide survey of protein kinases required for cell cycle progression. Nature, 2004, 432, 980-987.	27.8	324
64	Heterogeneous proliferative potential in regenerative adult newt cardiomyocytes. Journal of Cell Science, 2003, 116, 4001-4009.	2.0	129