Spyridon Theofilopoulos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8131814/publications.pdf

Version: 2024-02-01

567281 713466 21 874 15 citations h-index papers

g-index 21 21 21 1337 docs citations times ranked citing authors all docs

21

#	Article	IF	CITATIONS
1	The Cerebrospinal Fluid Profile of Cholesterol Metabolites in Parkinson's Disease and Their Association With Disease State and Clinical Features. Frontiers in Aging Neuroscience, 2021, 13, 685594.	3.4	9
2	24(S),25-Epoxycholesterol and cholesterol 24S-hydroxylase (CYP46A1) overexpression promote midbrain dopaminergic neurogenesis in vivo. Journal of Biological Chemistry, 2019, 294, 4169-4176.	3.4	30
3	Mining for Oxysterols in Cyp7b1â^'/â^' Mouse Brain and Plasma: Relevance to Spastic Paraplegia Type 5. Biomolecules, 2019, 9, 149.	4.0	14
4	Additional pathways of sterol metabolism: Evidence from analysis of Cyp27a1â^/lâ^' mouse brain and plasma. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 191-211.	2.4	29
5	The Matricellular Protein R-Spondin 2 Promotes Midbrain Dopaminergic Neurogenesis and Differentiation. Stem Cell Reports, 2018, 11, 651-664.	4.8	22
6	Dopamine Receptor Antagonists Enhance Proliferation and Neurogenesis of Midbrain Lmx1a-expressing Progenitors. Scientific Reports, 2016, 6, 26448.	3.3	29
7	Liver X receptors and cholesterol metabolism: role in ventral midbrain development and neurodegeneration. F1000prime Reports, 2015, 7, 37.	5.9	15
8	Cholestenoic acids regulate motor neuron survival via liver X receptors. Journal of Clinical Investigation, 2014, 124, 4829-4842.	8.2	84
9	Brain endogenous liver X receptor ligands selectively promote midbrain neurogenesis. Nature Chemical Biology, 2013, 9, 126-133.	8.0	116
10	Tiam1 Regulates the Wnt/Dvl/Rac1 Signaling Pathway and the Differentiation of Midbrain Dopaminergic Neurons. Molecular and Cellular Biology, 2013, 33, 59-70.	2.3	40
11	Analysis of bioactive oxysterols in newborn mouse brain by LC/MS. Journal of Lipid Research, 2012, 53, 2469-2483.	4.2	46
12	Identification and characterisation of endogenous LXR ligands in ventral midbrain development. Neuroscience Research, 2011, 71, e50.	1.9	1
13	Dkk1 Regulates Ventral Midbrain Dopaminergic Differentiation and Morphogenesis. PLoS ONE, 2011, 6, e15786.	2.5	23
14	Cerebrospinal Fluid Steroidomics: Are Bioactive Bile Acids Present in Brain?. Journal of Biological Chemistry, 2010, 285, 4666-4679.	3.4	109
15	Liver X Receptors and Oxysterols Promote Ventral Midbrain Neurogenesis In Vivo and in Human Embryonic Stem Cells. Cell Stem Cell, 2009, 5, 409-419.	11.1	129
16	Targeted lipidomic analysis of oxysterols in the embryonic central nervous system. Molecular BioSystems, 2009, 5, 529.	2.9	35
17	Novel function of the human presqualene diphosphate phosphatase as a type II phosphatidate phosphatase in phosphatidylcholine and triacylglyceride biosynthesis pathways. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2008, 1781, 731-742.	2.4	3
18	12-O-tetradecanoyl-phorbol-13-acetate-dependent up-regulation of dopaminergic gene expression requires Ras and neurofibromin in human IMR-32 neuroblastoma. Journal of Neurochemistry, 2006, 97, 97-103.	3.9	10

#	Article	IF	CITATIONS
19	The differentiation potential of human foetal neuronal progenitor cells in vitro. Developmental Brain Research, 2004, 153, 39-51.	1.7	41
20	Parallel induction of the formation of dopamine and its metabolites with induction of tyrosine hydroxylase expression in foetal rat and human cerebral cortical cells by brain-derived neurotrophic factor and glial-cell derived neurotrophic factor. Developmental Brain Research, 2001, 127, 111-122.	1.7	39
21	The neuronal survival effects of rasagiline and deprenyl on fetal human and rat ventral mesencephalic neurones in culture. NeuroReport, 2000, 11, 3937-3941.	1.2	50