Haruo Kanno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8131402/publications.pdf

Version: 2024-02-01

73 papers

9,923 citations

236925 25 h-index 95266 68 g-index

73 all docs

73 docs citations

73 times ranked

21488 citing authors

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
3	Rapamycin Promotes Autophagy and Reduces Neural Tissue Damage and Locomotor Impairment after Spinal Cord Injury in Mice. Journal of Neurotrauma, 2012, 29, 946-956.	3.4	170
4	Adjacent segment degeneration after fusion spinal surgeryâ€"a systematic review. International Orthopaedics, 2019, 43, 987-993.	1.9	152
5	Combination of Engineered Schwann Cell Grafts to Secrete Neurotrophin and Chondroitinase Promotes Axonal Regeneration and Locomotion after Spinal Cord Injury. Journal of Neuroscience, 2014, 34, 1838-1855.	3.6	139
6	Spinal cord injury induces upregulation of Beclin 1 and promotes autophagic cell death. Neurobiology of Disease, 2009, 33, 143-148.	4.4	130
7	Induction of Autophagy and Autophagic Cell Death in Damaged Neural Tissue After Acute Spinal Cord Injury in Mice. Spine, 2011, 36, E1427-E1434.	2.0	116
8	Schwann cell transplantation for spinal cord injury repair: its significant therapeutic potential and prospectus. Reviews in the Neurosciences, 2015, 26, 121-8.	2.9	95
9	The role of mTOR signaling pathway in spinal cord injury. Cell Cycle, 2012, 11, 3175-3179.	2.6	92
10	The role of autophagy in spinal cord injury. Autophagy, 2009, 5, 390-392.	9.1	77
11	Prevalence and Distribution of Ossified Lesions in the Whole Spine of Patients with Cervical Ossification of the Posterior Longitudinal Ligament A Multicenter Study (JOSL CT study). PLoS ONE, 2016, 11, e0160117.	2.5	73
12	Rapamycin suppresses microglial activation and reduces the development of neuropathic pain after spinal cord injury. Journal of Orthopaedic Research, 2017, 35, 93-103.	2.3	61
13	Dynamic Change of Dural Sac Cross-Sectional Area in Axial Loaded Magnetic Resonance Imaging Correlates With the Severity of Clinical Symptoms in Patients With Lumbar Spinal Canal Stenosis. Spine, 2012, 37, 207-213.	2.0	59
14	Low-energy extracorporeal shock wave therapy promotes vascular endothelial growth factor expression and improves locomotor recovery after spinal cord injury. Journal of Neurosurgery, 2014, 121, 1514-1525.	1.6	58
15	Minimally invasive discectomy for lumbar disc herniation: current concepts, surgical techniques, and outcomes. International Orthopaedics, 2019, 43, 917-922.	1.9	58
16	Diagram specific to sacroiliac joint pain site indicated by one-finger test. Journal of Orthopaedic Science, 2008, 13, 492-497.	1.1	57
17	Low-energy extracorporeal shock wave therapy for promotion of vascular endothelial growth factor expression and angiogenesis and improvement of locomotor and sensory functions after spinal cord injury. Journal of Neurosurgery: Spine, 2016, 25, 745-755.	1.7	51
18	Axial Loading During Magnetic Resonance Imaging in Patients With Lumbar Spinal Canal Stenosis. Spine, 2012, 37, E985-E992.	2.0	43

#	Article	IF	CITATIONS
19	Genetic Ablation of Transcription Repressor Bach1 Reduces Neural Tissue Damage and Improves Locomotor Function after Spinal Cord Injury in Mice. Journal of Neurotrauma, 2009, 26, 31-39.	3.4	42
20	Prevalence and Distribution of Diffuse Idiopathic Skeletal Hyperostosis on Whole-spine Computed Tomography in Patients With Cervical Ossification of the Posterior Longitudinal Ligament. Clinical Spine Surgery, 2018, 31, E460-E465.	1.3	37
21	Prevalence and distribution of ossification of the supra/interspinous ligaments in symptomatic patients with cervical ossification of the posterior longitudinal ligament of the spine: a CT-based multicenter cross-sectional study. BMC Musculoskeletal Disorders, 2016, 17, 492.	1.9	36
22	Increasing Incidence of Degenerative Spinal Diseases in Japan during 25 Years: The Registration System of Spinal Surgery in Tohoku University Spine Society. Tohoku Journal of Experimental Medicine, 2016, 238, 153-163.	1.2	36
23	Changes in lumbar spondylolisthesis on axial-loaded MRI: do they reproduce the positional changes in the degree of olisthesis observed on X-ray images in the standing position?. Spine Journal, 2015, 15, 1255-1262.	1.3	33
24	Reoperation rates after fenestration for lumbar spinal canal stenosis: a 20-year period survival function method analysis. European Spine Journal, 2015, 24, 381-387.	2.2	29
25	Distribution of ossified spinal lesions in patients with severe ossification of the posterior longitudinal ligament and prediction of ossification at each segment based on the cervical OP index classification: a multicenter study (JOSL CT study). BMC Musculoskeletal Disorders, 2018, 19, 107.	1.9	26
26	Spine-shortening vertebral osteotomy in a patient with tethered cord syndrome and a vertebral fracture. Journal of Neurosurgery: Spine, 2008, 9, 62-66.	1.7	25
27	Upregulation of the receptor-interacting protein 3 expression and involvement in neural tissue damage after spinal cord injury in mice. BMC Neuroscience, 2015, 16, 62.	1.9	24
28	Dynamic Changes in the Dural Sac Cross-Sectional Area on Axial Loaded MR Imaging: Is There a Difference between Degenerative Spondylolisthesis and Spinal Stenosis?. American Journal of Neuroradiology, 2012, 33, 1191-1197.	2.4	23
29	Randomized trial of granulocyte colony-stimulating factor for spinal cord injury. Brain, 2021, 144, 789-799.	7.6	23
30	Co-existence of ossification of the nuchal ligament is associated with severity of ossification in the whole spine in patients with cervical ossification of the posterior longitudinal ligament -A multi-center CT study Journal of Orthopaedic Science, 2019, 24, 35-41.	1.1	21
31	Successful Management of Gorham-Stout Disease in the Cervical Spine by Combined Conservative and Surgical Treatments: A Case Report. Tohoku Journal of Experimental Medicine, 2017, 241, 249-254.	1.2	20
32	Chaperone-Mediated Autophagy in Neurodegenerative Diseases and Acute Neurological Insults in the Central Nervous System. Cells, 2022, 11 , 1205 .	4.1	20
33	Recurrence of ossification of ligamentum flavum at the same intervertebral level in the thoracic spine: a report of two cases and review of the literature. European Spine Journal, 2018, 27, 359-367.	2.2	18
34	Low-energy extracorporeal shock wave therapy promotes BDNF expression and improves functional recovery after spinal cord injury in rats. Experimental Neurology, 2020, 328, 113251.	4.1	18
35	Study protocol for the G-SPIRIT trial: a randomised, placebo-controlled, double-blinded phase III trial of granulocyte colony-stimulating factor-mediated neuroprotection for acute spinal cord injury. BMJ Open, 2018, 8, e019083.	1.9	17
36	Novel augmentation technique of percutaneous pedicle screw fixation using hydroxyapatite granules in the osteoporotic lumbar spine: a cadaveric biomechanical analysis. European Spine Journal, 2021, 30, 71-78.	2.2	14

#	Article	IF	Citations
37	Surgical Management of Giant Sacral Schwannoma: A Case Series and Literature Review. World Neurosurgery, 2019, 129, e216-e223.	1.3	13
38	B-RAFV600E Inhibitor Dabrafenib Attenuates RIPK3-Mediated Necroptosis and Promotes Functional Recovery after Spinal Cord Injury. Cells, 2019, 8, 1582.	4.1	13
39	Enhancing percutaneous pedicle screw fixation with hydroxyapatite granules: A biomechanical study using an osteoporotic bone model. PLoS ONE, 2019, 14, e0223106.	2.5	12
40	Diagnosis of benign notochordal cell tumor of the spine: is a biopsy necessary?. Clinical Case Reports (discontinued), 2018, 6, 63-67.	0.5	11
41	An increase in the degree of olisthesis during axial loading reduces the dural sac size and worsens clinical symptoms in patients with degenerative spondylolisthesis. Spine Journal, 2018, 18, 726-733.	1.3	11
42	Chaperone-Mediated Autophagy after Spinal Cord Injury. Journal of Neurotrauma, 2020, 37, 1687-1695.	3.4	11
43	Machine Learning Approach in Predicting Clinically Significant Improvements After Surgery in Patients with Cervical Ossification of the Posterior Longitudinal Ligament. Spine, 2021, 46, 1683-1689.	2.0	11
44	Innovation of Surgical Techniques for Screw Fixation in Patients with Osteoporotic Spine. Journal of Clinical Medicine, 2022, 11, 2577.	2.4	11
45	Epidemiology of Surgically Treated Primary Spinal Cord Tumors in Miyagi, Japan. Neuroepidemiology, 2013, 41, 156-160.	2.3	10
46	Comparison of Surgical Outcomes After Open- and Double-Door Laminoplasties for Patients with Cervical Ossification of the Posterior Longitudinal Ligament. Spine, 2021, 46, E1238-E1245.	2.0	10
47	Comparison of low back pain sites identified by patient's finger versus hand: prospective randomized controlled clinical trial. Journal of Orthopaedic Science, 2007, 12, 254-259.	1.1	8
48	Reoperation Rates after Laminoplasty for Cervical Disorders: A 26-Year Period Survival Function Method Analysis. Spine Surgery and Related Research, 2019, 3, 304-311.	0.7	7
49	Anterior decompression through a posterior approach for thoracic myelopathy caused by ossification of the posterior longitudinal ligament: a novel concept in anterior decompression and technical notes with the preliminary outcomes. Journal of Neurosurgery: Spine, 2021, , 1-11.	1.7	7
50	Increased Facet Fluid Predicts Dynamic Changes in the Dural Sac Size on Axial-Loaded MRI in Patients with Lumbar Spinal Canal Stenosis. American Journal of Neuroradiology, 2016, 37, 730-735.	2.4	6
51	Comparison of laminoplasty and posterior fusion surgery for cervical ossification of posterior longitudinal ligament. Scientific Reports, 2022, 12, 748.	3.3	6
52	Changes in Expression of Receptor-Interacting Protein Kinase 1 in Secondary Neural Tissue Damage Following Spinal Cord Injury. Neuroscience Insights, 2020, 15, 263310552090640.	1.6	5
53	Mid- to Long-Term Outcomes After Resection of Thoracic Dumbbell Tumors Managed by Laminectomy and Unilateral Total Facetectomy Without Instrumented Fusion. Global Spine Journal, 2023, 13, 771-780.	2.3	5
54	Impact of Diabetes Mellitus on Cervical Spine Surgery for Ossification of the Posterior Longitudinal Ligament. Journal of Clinical Medicine, 2021, 10, 3375.	2.4	5

#	Article	IF	CITATIONS
55	T1 radiculopathy caused by intervertebral disc herniation: symptomatic and neurological features. Journal of Orthopaedic Science, 2009, 14, 103-106.	1.1	4
56	Atypical Findings on Magnetic Resonance Imaging in the Patients with Active Pyogenic Spondylitis in Japanese University Hospitals. Tohoku Journal of Experimental Medicine, 2013, 231, 13-19.	1.2	4
57	Spinal Cord Swelling After Surgery in Cervical Spondylotic Myelopathy. Clinical Spine Surgery, 2018, 31, E363-E367.	1.3	4
58	The characteristics of the patients with radiologically severe cervical ossification of the posterior longitudinal ligament of the spine: A CT-based multicenter cross-sectional study. Journal of Orthopaedic Science, 2020, 25, 746-750.	1.1	4
59	Perioperative Complications in Posterior Surgeries for Cervical Ossification of the Posterior Longitudinal Ligament. Clinical Spine Surgery, 2021, Publish Ahead of Print, E594-E600.	1.3	4
60	Severity of Myelopathy is Closely Associated With Advanced Age and Signal Intensity Change in Cervical Ossification of the Posterior Longitudinal Ligament. Clinical Spine Surgery, 2022, 35, E155-E161.	1.3	3
61	Prevalence of pre-existing factors causing spinal cord compression: Is there a difference between patients suffering from cervical spinal cord injury with and without bone injury?. Journal of Orthopaedic Science, 2021, , .	1.1	3
62	Association of occupational direct radiation exposure to the hands with longitudinal melanonychia and hand eczema in spine surgeons: a survey by the society for minimally invasive spinal treatment (MIST). European Spine Journal, 2021, 30, 3702-3708.	2.2	3
63	Factors Significantly Associated with Postoperative Neck Pain Deterioration after Surgery for Cervical Ossification of the Posterior Longitudinal Ligament: Study of a Cohort Using a Prospective Registry. Journal of Clinical Medicine, 2021, 10, 5026.	2.4	3
64	Reinforcement of Percutaneous Pedicle Screw Fixation with Hydroxyapatite Granules in Patients with Osteoporotic Spine: Biomechanical Performance and Clinical Outcomes. Medicina (Lithuania), 2022, 58, 579.	2.0	3
65	Recurrent primary osseous hemangiopericytoma in the thoracic spine: a case report and literature review. European Spine Journal, 2018, 27, 386-392.	2.2	2
66	Several pathologies cause delayed postoperative paralysis following posterior decompression and spinal fusion for thoracic myelopathy caused by ossification of the posterior longitudinal ligament. Journal of Orthopaedic Science, 2022, 27, 725-733.	1,1	2
67	Surgical results of nonambulatory patients caused by ossification of the posterior longitudinal ligaments in the thoracic spine: retrospective comparative study between posterior decompression and instrumented spinal fusion versus anterior decompression through a posterior approach. lournal of Neurosurgery: Spine. 2021. 34. 492-497.	1.7	2
68	Answer to the Letter to the Editor of T. Morimoto et al. concerning "Novel augmentation technique of percutaneous pedicle screw fixation using hydroxyapatite granules in the osteoporotic lumbar spine: A cadaveric biomechanical analysis―by Kanno, et al. [Eur Spine J. 2021 Jan;30(1):71–78]. European Spine Journal, 2021, 31, 212.	2.2	2
69	Retrospective comparison of the surgical results for patients with thoracic myelopathy caused by ossification of the posterior longitudinal ligament: Posterior decompression with instrumented spinal fusion versus modified anterior decompression through a posterior approach. Journal of Orthopaedic Science, 2022, 27, 323-329.	1.1	1
70	Impact of obesity on cervical ossification of the posterior longitudinal ligament: a nationwide prospective study. Scientific Reports, 2022, 12, .	3.3	1
71	Rate of spinal surgery in a rapidly aging society: the 27-year changes in Miyagi prefecture, Japan. Journal of Neurosurgical Sciences, 2021, 64, 525-530.	0.6	0
72	Neurological improvement is associated with neck pain attenuation after surgery for cervical ossification of the posterior longitudinal ligament. Scientific Reports, 2021, 11, 11910.	3.3	0

ARTICLE IF CITATIONS
73 Autophagy in Spinal Cord Injury: Pathogenic Roles and Therapeutic Implications., 2014,, 19-30. 0