
James T Muckerman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/81314/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CO ₂ Hydrogenation to Formate and Methanol as an Alternative to Photo- and Electrochemical CO ₂ Reduction. Chemical Reviews, 2015, 115, 12936-12973.	47.7	1,244
2	Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures. Nature Chemistry, 2012, 4, 383-388.	13.6	830
3	Biomass-derived electrocatalytic composites for hydrogen evolution. Energy and Environmental Science, 2013, 6, 1818.	30.8	343
4	Second-coordination-sphere and electronic effects enhance iridium(iii)-catalyzed homogeneous hydrogenation of carbon dioxide in water near ambient temperature and pressure. Energy and Environmental Science, 2012, 5, 7923.	30.8	228
5	Classical Dynamics of the Reaction of Fluorine Atoms with Hydrogen Molecules. II. Dependence on the Potential Energy Surface. Journal of Chemical Physics, 1972, 56, 2997-3006.	3.0	219
6	Theoretical studies of the mechanism of catalytic hydrogen production by a cobaloxime. Chemical Communications, 2011, 47, 12456.	4.1	213
7	Water Oxidation by a Ruthenium Complex with Noninnocent Quinone Ligands: Possible Formation of an Oâ°'O Bond at a Low Oxidation State of the Metal. Inorganic Chemistry, 2008, 47, 1787-1802.	4.0	200
8	Nickel(ii) macrocycles: highly efficient electrocatalysts for the selective reduction of CO2 to CO. Energy and Environmental Science, 2012, 5, 9502.	30.8	180
9	Mechanistic Insight through Factors Controlling Effective Hydrogenation of CO ₂ Catalyzed by Bioinspired Proton-Responsive Iridium(III) Complexes. ACS Catalysis, 2013, 3, 856-860.	11.2	169
10	Cp*Co(III) Catalysts with Proton-Responsive Ligands for Carbon Dioxide Hydrogenation in Aqueous Media. Inorganic Chemistry, 2013, 52, 12576-12586.	4.0	142
11	Highly Robust Hydrogen Generation by Bioinspired Ir Complexes for Dehydrogenation of Formic Acid in Water: Experimental and Theoretical Mechanistic Investigations at Different pH. ACS Catalysis, 2015, 5, 5496-5504.	11.2	134
12	Formic Acid Dehydrogenation with Bioinspired Iridium Complexes: A Kinetic Isotope Effect Study and Mechanistic Insight. ChemSusChem, 2014, 7, 1976-1983.	6.8	123
13	Efficient H ₂ generation from formic acid using azole complexes in water. Catalysis Science and Technology, 2014, 4, 34-37.	4.1	118
14	First-Principles Studies of the Structural and Electronic Properties of the (Ga ₁ ₋ <i>_x</i> Zn <i>_x</i>)(N ₁ ₋ <i> Solid Solution Photocatalyst. Journal of Physical Chemistry C, 2008, 112, 3439-3446.</i>	> <sublatix< s<="" td=""><td>ub11\$i>O<i></i></td></sublatix<>	ub 11 \$i>O <i></i>
15	Toward the accurate calculation of pKa values in water and acetonitrile. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 882-891.	1.0	112
16	CO ₂ Hydrogenation Catalyzed by Iridium Complexes with a Proton-Responsive Ligand. Inorganic Chemistry, 2015, 54, 5114-5123.	4.0	106
17	Classical Dynamics of the Reaction of Fluorine Atoms with Hydrogen Molecules. III. The Hotâ€Atom Reactions of 18F with HD. Journal of Chemical Physics, 1972, 57, 3388-3396.	3.0	104
18	Positional Effects of Hydroxy Groups on Catalytic Activity of Proton-Responsive Half-Sandwich Cp*Iridium(III) Complexes. Organometallics, 2014, 33, 6519-6530.	2.3	104

#	Article	IF	CITATIONS
19	Push or Pull? Proton Responsive Ligand Effects in Rhenium Tricarbonyl CO ₂ Reduction Catalysts. Journal of Physical Chemistry B, 2015, 119, 7457-7466.	2.6	88
20	Desulfurization of SO2and Thiophene on Surfaces and Nanoparticles of Molybdenum Carbide:Â Unexpected Ligand and Steric Effects. Journal of Physical Chemistry B, 2004, 108, 15662-15670.	2.6	72
21	First-Principles Approach to Calculating Energy Level Alignment at Aqueous Semiconductor Interfaces. Physical Review Letters, 2014, 113, 176802.	7.8	72
22	In Situ XRD Studies of ZnO/GaN Mixtures at High Pressure and High Temperature: Synthesis of Zn-Rich (Ga _{1â^²<i>x</i>} Zn _{<i>x</i>})(N _{1â^²<i>x</i>} O _{<i>x</i>}) Photocatalysts. Journal of Physical Chemistry C, 2010, 114, 1809-1814.	3.1	71
23	Calculation of thermodynamic hydricities and the design of hydride donors for CO ₂ reduction. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15657-15662.	7.1	71
24	CO ₂ Hydrogenation Catalysts with Deprotonated Picolinamide Ligands. ACS Catalysis, 2017, 7, 6426-6429.	11.2	70
25	Direction to practical production of hydrogen by formic acid dehydrogenation with Cp*Ir complexes bearing imidazoline ligands. Catalysis Science and Technology, 2016, 6, 988-992.	4.1	69
26	Mechanistic Studies of Hydrogen Evolution in Aqueous Solution Catalyzed by a Tertpyridine–Amine Cobalt Complex. Inorganic Chemistry, 2015, 54, 4310-4321.	4.0	64
27	Preparation of (Ga _{1â[°]<i>x</i>} Zn _{<i>x</i>})(N _{1â[°]<i>x</i>} O _{<i>x</i>}) Photocatalysts from the Reaction of NH ₃ with Ga ₂ O ₃ /ZnO and ZnGa ₂ O ₄ : In Situ Time-Resolved XRD and XAFS Studies. Journal of Physical	3.1	63
28	Chemistry C, 2009, Alex 5650 36550 MRCI Calculations of the Lowest Potential Energy Surface for CH3OH and Direct ab Initio Dynamics Simulations of the O(1D) + CH4Reactionâ€. Journal of Physical Chemistry A, 2004, 108, 8615-8623.	2.5	58
29	Mechanism of Photocatalytic Reduction of CO ₂ by Re(bpy)(CO) ₃ Cl from Differences in Carbon Isotope Discrimination. ACS Catalysis, 2016, 6, 5473-5481.	11.2	58
30	Efficient Hydrogen Storage and Production Using a Catalyst with an Imidazolineâ€Based, Protonâ€Responsive Ligand. ChemSusChem, 2017, 10, 1071-1075.	6.8	57
31	Chemical reactivity of metcar Ti8C12, nanocrystal Ti14C13 and a bulk TiC(001) surface: A density functional study. Journal of Chemical Physics, 2003, 118, 7737-7740.	3.0	53
32	Photocatalytic CO ₂ Reduction by Trigonal-Bipyramidal Cobalt(II) Polypyridyl Complexes: The Nature of Cobalt(I) and Cobalt(0) Complexes upon Their Reactions with CO ₂ , CO, or Proton. Inorganic Chemistry, 2018, 57, 5486-5498.	4.0	53
33	On the valence bond diatomicsâ€inâ€molecules method. II. Application to the valence states of FH2. Journal of Chemical Physics, 1979, 71, 233-254.	3.0	52
34	Water Adsorption on the GaN (101Ì0) Nonpolar Surface. Journal of Physical Chemistry C, 2009, 113, 3365-3368.	3.1	51
35	Striking Differences in Properties of Geometric Isomers of [Ir(tpy)(ppy)H] ⁺ : Experimental and Computational Studies of their Hydricities, Interaction with CO ₂ , and Photochemistry. Angewandte Chemie - International Edition, 2015, 54, 14128-14132.	13.8	51
36	The <i>Trans</i> Effect in Electrocatalytic CO ₂ Reduction: Mechanistic Studies of Asymmetric Ruthenium Pyridyl-Carbene Catalysts. Journal of the American Chemical Society, 2019, 141, 6658-6671.	13.7	51

		JAMES I IV	JAMES I MUCKERMAN	
#	Article		IF	CITATIONS
37	On the valence bond diatomicsâ€inâ€molecules method. I. A projection operator reformu Chemical Physics, 1979, 71, 225-232.	lation. Journal of	3.0	50
38				
				<u></u>

JAMES T MUCKERMAN

#	Article	IF	CITATIONS
55	A K-dependent adiabatic approximation to the Renner–Teller effect for triatomic molecules. Journal of Chemical Physics, 2002, 116, 1435-1442.	3.0	25
56	Quantum dynamics of the photoinitiated unimolecular dissociation of HOCO. Journal of Chemical Physics, 2002, 117, 11139-11145.	3.0	24
57	Repetitively sampled time-of-flight mass spectrometry for gas-phase kinetics studies. Review of Scientific Instruments, 1999, 70, 3259-3264.	1.3	23
58	Symmetry-adapted filter diagonalization: Calculation of the vibrational spectrum of planar acetylene from correlation functions. Journal of Chemical Physics, 1998, 109, 7128-7136.	3.0	21
59	Highly Efficient and Selective Methanol Production from Paraformaldehyde and Water at Room Temperature. ACS Catalysis, 2018, 8, 5233-5239.	11.2	20
60	Modeâ€selective infrared excitation of linear acetylene. Journal of Chemical Physics, 1995, 102, 3897-3910.	3.0	17
61	Electrodeposition of Pt onto RuO ₂ (110) Single-Crystal Surface. Journal of Physical Chemistry C, 2007, 111, 15306-15311.	3.1	13
62	Exploring the Multiple Reaction Pathways for the H + cyc-C3H6 Reaction. Journal of Physical Chemistry A, 2004, 108, 10844-10849.	2.5	11
63	Theoretical Investigation of the Binding of Small Molecules and the Intramolecular Agostic Interaction at Tungsten Centers with Carbonyl and Phosphine Ligandsâ€. Journal of Physical Chemistry B, 2007, 111, 6815-6821.	2.6	11
64	Bond selective infrared multiphoton excitation and dissociation of linear monodeuterated acetylene. Journal of Chemical Physics, 1996, 105, 535-550.	3.0	10
65	Strong-field optical control of vibrational dynamics: Vibrational Stark effect in planar acetylene. Journal of Chemical Physics, 1999, 110, 2446-2451.	3.0	10
66	THEORETICAL DETERMINATION OF ROVIBRATIONAL ENERGIES AND ANOMALOUS ISOTOPIC EFFECT OF WEAKLY BOUND CLUSTER HXeOH. Journal of Theoretical and Computational Chemistry, 2003, 02, 573-581.	1.8	7
67	Catalytic Reactions Using Transition-Metal-Complexes Toward Solar Fuel Generation. Bulletin of Japan Society of Coordination Chemistry, 2008, 51, 41-54.	0.2	7
68	Aluminum Hydride Separation Using <i>N</i> -Alkylmorpholine. Journal of Physical Chemistry C, 2013, 117, 14983-14991.	3.1	5
69	Artificial Photosynthesis. ACS Symposium Series, 2010, , 283-312.	0.5	2
70	A Density Functional Theory Study of the Catalytic role of Ti atoms in Reversible Hydrogen Storage in the Complex Metal Hydride, NaAlH4. Materials Research Society Symposia Proceedings, 2005, 884, 1.	0.1	0