
Jacques Avelino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8130785/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: a review. Agronomy for Sustainable Development, 2012, 32, 273-303.	5.3	470
2	Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7863-E7870.	7.1	401
3	The coffee rust crises in Colombia and Central America (2008–2013): impacts, plausible causes and proposed solutions. Food Security, 2015, 7, 303-321.	5.3	388
4	Effects of slope exposure, altitude and yield on coffee quality in two altitudeterroirs of Costa Rica, Orosi and Santa MarÃa de Dota. Journal of the Science of Food and Agriculture, 2005, 85, 1869-1876.	3.5	155
5	Ecosystem-based adaptation for smallholder farmers: Definitions, opportunities and constraints. Agriculture, Ecosystems and Environment, 2015, 211, 126-132.	5.3	142
6	The intensity of a coffee rust epidemic is dependent on production situations. Ecological Modelling, 2006, 197, 431-447.	2.5	120
7	Quality of Different Honduran Coffees in Relation to Several Environments. Journal of Food Science, 2003, 68, 2356-2361.	3.1	118
8	Primary and Secondary Yield Losses Caused by Pests and Diseases: Assessment and Modeling in Coffee. PLoS ONE, 2017, 12, e0169133.	2.5	116
9	Shade is conducive to coffee rust as compared to full sun exposure under standardized fruit load conditions. Crop Protection, 2012, 38, 21-29.	2.1	111
10	Landscape context and scale differentially impact coffee leaf rust, coffee berry borer, and coffee rootâ€knot nematodes. Ecological Applications, 2012, 22, 584-596.	3.8	102
11	Effects of crop management patterns on coffee rust epidemics. Plant Pathology, 2004, 53, 541-547.	2.4	100
12	Effects of shade, altitude and management on multiple ecosystem services in coffee agroecosystems. European Journal of Agronomy, 2017, 82, 308-319.	4.1	98
13	Vegetation structure and productivity in cocoa-based agroforestry systems in Talamanca, Costa Rica. Agriculture, Ecosystems and Environment, 2012, 149, 181-188.	5.3	88
14	Leaf area index as an indicator of ecosystem services and management practices: An application for coffee agroforestry. Agriculture, Ecosystems and Environment, 2014, 192, 19-37.	5.3	73
15	Crop health and its global impacts on the components of food security. Food Security, 2017, 9, 311-327.	5.3	68
16	Multiple-Disease System in Coffee: From Crop Loss Assessment to Sustainable Management. Annual Review of Phytopathology, 2018, 56, 611-635.	7.8	48
17	Shade Effects on the Dispersal of Airborne <i>Hemileia vastatrix</i> Uredospores. Phytopathology, 2016, 106, 572-580.	2.2	47
18	The use of Ecosystem-based Adaptation practices by smallholder farmers in Central America. Agriculture, Ecosystems and Environment, 2017, 246, 279-290.	5.3	47

JACQUES AVELINO

#	Article	IF	CITATIONS
19	Topography and Crop Management Are Key Factors for the Development of American Leaf Spot Epidemics on Coffee in Costa Rica. Phytopathology, 2007, 97, 1532-1542.	2.2	46
20	Delicate balance between pest and disease injuries, yield performance, and other ecosystem services in the complex coffee-based systems of Costa Rica. Agriculture, Ecosystems and Environment, 2016, 222, 1-12.	5.3	46
21	Effects of phosphite on phytoalexin accumulation in leaves of cowpea infected with Phytophthora cryptogea. Physiological and Molecular Plant Pathology, 1988, 32, 425-435.	2.5	42
22	Diversity and spatial clustering of shade trees affect cacao yield and pathogen pressure in Costa Rican agroforests. Basic and Applied Ecology, 2013, 14, 329-336.	2.7	41
23	Transformation of coffee-growing landscapes across Latin America. A review. Agronomy for Sustainable Development, 2021, 41, 62.	5.3	36
24	Bird functional diversity supports pest control services in a Costa Rican coffee farm. Agriculture, Ecosystems and Environment, 2016, 235, 277-288.	5.3	35
25	Towards a Collaborative Research: A Case Study on Linking Science to Farmers' Perceptions and Knowledge on Arabica Coffee Pests and Diseases and Its Management. PLoS ONE, 2016, 11, e0159392.	2.5	32
26	Shade Tree Spatial Structure and Pod Production Explain Frosty Pod Rot Intensity in Cacao Agroforests, Costa Rica. Phytopathology, 2014, 104, 275-281.	2.2	28
27	Coffee agroforestry systems capable of reducing disease-induced yield and economic losses while providing multiple ecosystem services. Crop Protection, 2020, 134, 105149.	2.1	28
28	Epidemics and the future of coffee production. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	28
29	Shade tree Chloroleucon eurycyclum promotes coffee leaf rust by reducing uredospore wash-off by rain. Crop Protection, 2020, 129, 105038.	2.1	27
30	Interactive effects of altitude, microclimate and shading system on coffee leaf rust. Journal of Plant Interactions, 2019, 14, 407-415.	2.1	22
31	Forecast models of coffee leaf rust symptoms and signs based on identified microclimatic combinations in coffee-based agroforestry systems in Costa Rica. Crop Protection, 2020, 130, 105046.	2.1	21
32	Contribution of shade trees to wind dynamics and pathogen dispersal on the edge of coffee agroforestry systems: A functional traits approach. Crop Protection, 2020, 130, 105071.	2.1	20
33	Synergies and tradeoffs in natural regulation of crop pests and diseases under plant species diversification. Crop Protection, 2021, 146, 105658.	2.1	17
34	Unraveling the Complexity of Coffee Leaf Rust Behavior and Development in Different <i>Coffea arabica</i> Agroecosystems. Phytopathology, 2020, 110, 418-427.	2.2	16
35	Effects of microclimatic variables on the symptoms and signs onset of Moniliophthora roreri, causal agent of Moniliophthora pod rot in cacao. PLoS ONE, 2017, 12, e0184638.	2.5	15
36	Discovering weather periods and crop properties favorable for coffee rust incidence from feature selection approaches. Computers and Electronics in Agriculture, 2020, 176, 105640.	7.7	15

JACQUES AVELINO

#	Article	IF	CITATIONS
37	Shade tree traits and microclimate modifications: Implications for pathogen management in biodiverse coffee agroforests. Biotropica, 2021, 53, 1356-1367.	1.6	15
38	Microclimate estimation under different coffee-based agroforestry systems using full-sun weather data and shade tree characteristics. European Journal of Agronomy, 2022, 132, 126396.	4.1	15
39	Economic constraints as drivers of coffee rust epidemics in Nicaragua. Crop Protection, 2020, 127, 104980.	2.1	14
40	Effects of shade trees on Coffea Arabica pests and diseases. Cahiers Agricultures, 2012, 21, 89-97.	0.9	11
41	Relationships between agro-ecological factors and population densities of Meloidogyne exigua and Pratylenchus coffeae sensu lato in coffee roots, in Costa Rica. Applied Soil Ecology, 2009, 43, 95-105.	4.3	10
42	CHAPTER 9: Coffee Rust Epidemics in Central America: Chronicle of a Resistance Breakdown Following the Great Epidemics of 2012 and 2013. , 2020, , 185-198.		10
43	Tropical Crop Pests and Diseases in a Climate Change Setting—A Few Examples. , 2016, , 73-82.		8
44	Local and regional drivers of the African coffee white stem borer (<i>Monochamus leuconotus</i>) in Uganda. Agricultural and Forest Entomology, 2018, 20, 514-522.	1.3	8
45	Hojarasca e inóculo de Mycena citricolor sobre la epidemia de ojo de gallo. Agronomy Mesoamerican, 0, , 77-94.	0.2	8
46	Adaptación basada en ecosistemas: efecto de los árboles de sombra sobre servicios ecosistémicos en cafetales. Agronomy Mesoamerican, 0, , 499-516.	0.2	8
47	Assessing the joint effects of landscape, farm features and crop management practices on berry damage in coffee plantations. Agriculture, Ecosystems and Environment, 2022, 330, 107903.	5.3	8
48	Rule-based expert system for detection of coffee rust warnings in colombian crops. Journal of Intelligent and Fuzzy Systems, 2019, 36, 4765-4775.	1.4	7
49	Improved forecasting of coffee leaf rust by qualitative modeling: Design and expert validation of the ExpeRoya model. Agricultural Systems, 2022, 197, 103352.	6.1	5
50	FramePests: A Comprehensive Framework for Crop Pests Modeling and Forecasting. IEEE Access, 2021, 9, 115579-115598.	4.2	2
51	Concurrent starch accumulation in stump and high fruit production in coffee (<i>Coffea) Tj ETQq1 1 0.784314 i</i>	∙gBŢ /Ovei 3.1	rlock 10 Tf 50
52	No evidence of foliar disease impact on crop root functional strategies and soil microbial communities: what does this mean for organic coffee?. Oikos, 0, , .	2.7	2
53	Gestion des risques liés à la rouille orangée du caféier (Hemileia vastatrix) en Amérique centrale : apports de simulations interactives en distanciel. , 2021, 11, .		0