
William E Smoyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8130352/publications.pdf Version: 2024-02-01

WILLIAM E SMOVER

#	Article	IF	CITATIONS
1	Epidemiology and Pathophysiology of Nephrotic Syndrome–Associated Thromboembolic Disease. Clinical Journal of the American Society of Nephrology: CJASN, 2012, 7, 513-520.	4.5	256
2	Dyslipidaemia in nephrotic syndrome: mechanisms and treatment. Nature Reviews Nephrology, 2018, 14, 57-70.	9.6	192
3	IPNA clinical practice recommendations for the diagnosis and management of children with steroid-resistant nephrotic syndrome. Pediatric Nephrology, 2020, 35, 1529-1561.	1.7	179
4	Epidemiology and Risk Factors for Thromboembolic Complications of Childhood Nephrotic Syndrome: A Midwest Pediatric Nephrology Consortium (MWPNC) Study. Journal of Pediatrics, 2009, 155, 105-110.e1.	1.8	120
5	HLA-DQA1 and PLCG2 Are Candidate Risk Loci for Childhood-Onset Steroid-Sensitive Nephrotic Syndrome. Journal of the American Society of Nephrology: JASN, 2015, 26, 1701-1710.	6.1	118
6	Childhood nephrotic syndrome—current and future therapies. Nature Reviews Nephrology, 2012, 8, 445-458.	9.6	85
7	Venous thromboembolism in pediatric nephrotic syndrome. Pediatric Nephrology, 2014, 29, 989-997.	1.7	69
8	CureGN Study Rationale, Design, and Methods: Establishing a Large Prospective Observational Study of Glomerular Disease. American Journal of Kidney Diseases, 2019, 73, 218-229.	1.9	68
9	†Learn From Every Patient': implementation and early results of a learning health system. Developmental Medicine and Child Neurology, 2017, 59, 183-191.	2.1	59
10	Albumin-induced podocyte injury and protection are associated with regulation of COX-2. Kidney International, 2014, 86, 1150-1160.	5.2	50
11	Association of Serum Soluble Urokinase Receptor Levels With Progression of Kidney Disease in Children. JAMA Pediatrics, 2017, 171, e172914.	6.2	46
12	"Saving Young Lives―with acute kidney injury: the challenge of acute dialysis in low-resource settings. Kidney International, 2016, 89, 254-256.	5.2	45
13	Peritoneal Dialysis to Treat Patients with Acute Kidney Injury—The Saving Young Lives Experience in West Africa: Proceedings of the Saving Young Lives Session at the First International Conference of Dialysis in West Africa, Dakar, Senegal, December 2015. Peritoneal Dialysis International, 2017, 37, 155-158.	2.3	45
14	Creating Local Learning Health Systems. JAMA - Journal of the American Medical Association, 2016, 316, 2481.	7.4	40
15	Clinical Characteristics and Treatment Patterns of Children and Adults With IgA Nephropathy or IgA Vasculitis: Findings From the CureCN Study. Kidney International Reports, 2018, 3, 1373-1384.	0.8	39
16	Health-related quality of life in glomerular disease. Kidney International, 2019, 95, 1209-1224.	5.2	38
17	Thrombin-Induced Podocyte Injury Is Protease-Activated Receptor Dependent. Journal of the American Society of Nephrology: JASN, 2017, 28, 2618-2630.	6.1	34
18	Predicting and Defining Steroid Resistance in Pediatric Nephrotic Syndrome Using Plasma Proteomics. Kidney International Reports, 2020, 5, 66-80.	0.8	34

WILLIAM E SMOYER

#	Article	IF	CITATIONS
19	Rituximab Use in the Management of Childhood Nephrotic Syndrome. Frontiers in Pediatrics, 2019, 7, 178.	1.9	33
20	Saving Young Lives: provision of acute dialysis in low-resource settings. Lancet, The, 2015, 386, 2056.	13.7	30
21	Comparison of Direct Action of Thiazolidinediones and Glucocorticoids on Renal Podocytes: Protection from Injury and Molecular Effects. Molecular Pharmacology, 2011, 80, 389-399.	2.3	29
22	Using Electronic Health Record Data to Rapidly Identify Children with Glomerular Disease for Clinical Research. Journal of the American Society of Nephrology: JASN, 2019, 30, 2427-2435.	6.1	29
23	Association of infections and venous thromboembolism in hospitalized children with nephrotic syndrome. Pediatric Nephrology, 2019, 34, 261-267.	1.7	29
24	Predicting and Defining Steroid Resistance in Pediatric Nephrotic Syndrome Using Plasma Metabolomics. Kidney International Reports, 2020, 5, 81-93.	0.8	28
25	Challenges of access to kidney care for children in low-resource settings. Nature Reviews Nephrology, 2021, 17, 33-45.	9.6	28
26	SARS-CoV-2 vaccine testing and trials in the pediatric population: biologic, ethical, research, and implementation challenges. Pediatric Research, 2021, 90, 966-970.	2.3	27
27	Using a Multi-Institutional Pediatric Learning Health System to Identify Systemic Lupus Erythematosus and Lupus Nephritis. Clinical Journal of the American Society of Nephrology: CJASN, 2022, 17, 65-74.	4.5	24
28	Disease Severity Correlates with Thrombotic Capacity in Experimental Nephrotic Syndrome. Journal of the American Society of Nephrology: JASN, 2015, 26, 3009-3019.	6.1	23
29	Development of a pediatric-specific clinical probability tool for diagnosis of venous thromboembolism: a feasibility study. Pediatric Research, 2015, 77, 463-471.	2.3	22
30	Dyslipidemia and cardiovascular health in childhood nephrotic syndrome. Pediatric Nephrology, 2020, 35, 1601-1619.	1.7	21
31	Healthcare burden of venous thromboembolism in childhood chronic renal diseases. Pediatric Nephrology, 2015, 30, 829-837.	1.7	19
32	Long-Term Outcomes of C3 Glomerulopathy and Immune-Complex Membranoproliferative Glomerulonephritis in Children. Kidney International Reports, 2020, 5, 2313-2324.	0.8	14
33	Nephrotic syndrome disease activity is proportional to its associated hypercoagulopathy. Thrombosis Research, 2021, 201, 50-59.	1.7	13
34	Activation of the IL-2 Receptor in Podocytes: A Potential Mechanism for Podocyte Injury in Idiopathic Nephrotic Syndrome?. PLoS ONE, 2016, 11, e0157907.	2.5	13
35	Renal Survival in Children with Glomerulonephritis with Crescents: A Pediatric Nephrology Research Consortium Cohort Study. Journal of Clinical Medicine, 2020, 9, 2385.	2.4	12
36	Glomerular Diseases: Registries and Clinical Trials. Clinical Journal of the American Society of Nephrology: CJASN, 2016, 11, 2234-2243.	4.5	11

WILLIAM E SMOYER

#	Article	IF	CITATIONS
37	"Learn From Every Patient― How a Learning Health System Can Improve Patient Care. Pediatric Quality & Safety, 2018, 3, e100.	0.8	11
38	Advances in proteomic profiling of pediatric kidney diseases. Pediatric Nephrology, 2022, 37, 2255-2265.	1.7	10
39	Plasma Cytokine Profiling to Predict Steroid Resistance in Pediatric Nephrotic Syndrome. Kidney International Reports, 2021, 6, 785-795.	0.8	7
40	Improving data quality in observational research studies: Report of the Cure Glomerulonephropathy (CureGN) network. Contemporary Clinical Trials Communications, 2021, 22, 100749.	1.1	7
41	Role of albumin and its modifications in glomerular injury. Pflugers Archiv European Journal of Physiology, 2017, 469, 975-982.	2.8	6
42	Pharmacological and genetic inhibition of downstream targets of p38 MAPK in experimental nephrotic syndrome. American Journal of Physiology - Renal Physiology, 2018, 314, F602-F613.	2.7	6
43	Evaluation of the Reproductive Care Provided to Adolescent Patients in Nephrology Clinics: A Pediatric Nephrology Research Consortium Study. Kidney International Reports, 2021, 6, 1411-1415.	0.8	5
44	Innovating and invigorating the clinical trial infrastructure for glomerular diseases. Kidney International, 2021, 99, 519-523.	5.2	4
45	A pediatric gateway initiative for glomerular disease: introducing PIONEER. Kidney International, 2021, 99, 515-518.	5.2	4
46	Biomarkers in pediatric glomerulonephritis and nephrotic syndrome. Pediatric Nephrology, 2021, 36, 2659-2673.	1.7	4
47	Long-term ACE inhibition in Alport syndrome: are the benefits worth the risks?. Kidney International, 2020, 97, 1104-1106.	5.2	4
48	Sponsors meet scientists to speed pediatric medicines development. Science Translational Medicine, 2015, 7, 279fs11.	12.4	3
49	Enhancing clinical trial development for pediatric kidney diseases. Pediatric Research, 2017, 82, 727-732.	2.3	3
50	Utility of the 2018 revised ISN/RPS thresholds for glomerular crescents in childhood-onset lupus nephritis: a Pediatric Nephrology Research Consortium study. Pediatric Nephrology, 2022, 37, 3139-3145.	1.7	3
51	Endogenous Thrombin Potential is Directly Correlated with Proteinuria Severity in Both Nephrotic Syndrome Patients and an Animal Model of Nephrotic Syndrome. Blood, 2014, 124, 4243-4243.	1.4	1
52	Steroid Sensitive and Steroid Resistant Nephrotic Syndrome. , 2011, , 175-200.		0
53	Results of the PROPINE randomized controlled trial: determining the ever-elusive target, the optimal plan for relapses of nephrotic syndrome in children. Kidney International, 2021, 99, 311-313.	5.2	0
54	Thrombin Generation Is Directly Correlated To Proteinuria Severity In An Experimental Model Of Nephrotic Syndrome. Blood, 2013, 122, 3615-3615.	1.4	0

#	Article	IF	CITATIONS
55	Thrombin Induces Apoptosis in Human and Rat Podocytes in a Protease Activated Receptor (PAR)-Dependent Manner. Blood, 2014, 124, 2808-2808.	1.4	0