
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8129160/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Gene Signature of Activated M-CSF-Primed Human Monocyte-Derived Macrophages Is IL-10-Dependent. Journal of Innate Immunity, 2022, 14, 243-256.	3.8	12
2	Activation of LXR Nuclear Receptors Impairs the Anti-Inflammatory Gene and Functional Profile of M-CSF-Dependent Human Monocyte-Derived Macrophages. Frontiers in Immunology, 2022, 13, 835478.	4.8	8
3	Intravenous Immunoglobulins Promote an Expansion of Monocytic Myeloid-Derived Suppressor Cells (MDSC) in CVID Patients. Journal of Clinical Immunology, 2022, 42, 1093-1105.	3.8	2
4	CD28 is expressed by macrophages with antiâ€inflammatory potential and limits their Tâ€cell activating capacity. European Journal of Immunology, 2021, 51, 824-834.	2.9	4
5	5-HT2B Receptor on Macrophages: What for?. Receptors, 2021, , 99-130.	0.2	3
6	Transcriptomic Profiles of CD47 in Breast Tumors Predict Outcome and Are Associated with Immune Activation. International Journal of Molecular Sciences, 2021, 22, 3836.	4.1	2
7	MAFB and MAF Transcription Factors as Macrophage Checkpoints for COVID-19 Severity. Frontiers in Immunology, 2020, 11, 603507.	4.8	19
8	Folate Receptor β (FRβ) Expression in Tissue-Resident and Tumor-Associated Macrophages Associates with and Depends on the Expression of PU.1. Cells, 2020, 9, 1445.	4.1	18
9	Growth Hormone Reprograms Macrophages toward an Anti-Inflammatory and Reparative Profile in an MAFB-Dependent Manner. Journal of Immunology, 2020, 205, 776-788.	0.8	14
10	Serotonin (5-HT) Shapes the Macrophage Gene Profile through the 5-HT2B–Dependent Activation of the Aryl Hydrocarbon Receptor. Journal of Immunology, 2020, 204, 2808-2817.	0.8	24
11	MMP-12, Secreted by Pro-Inflammatory Macrophages, Targets Endoglin in Human Macrophages and Endothelial Cells. International Journal of Molecular Sciences, 2019, 20, 3107.	4.1	51
12	Signal Integration and Transcriptional Regulation of the Inflammatory Response Mediated by the GM-/M-CSF Signaling Axis in Human Monocytes. Cell Reports, 2019, 29, 860-872.e5.	6.4	29
13	Role of TLR4 (Toll-Like Receptor 4) in N1/N2 Neutrophil Programming After Stroke. Stroke, 2019, 50, 2922-2932.	2.0	106
14	CD38 promotes pristane-induced chronic inflammation and increases susceptibility to experimental lupus by an apoptosis-driven and TRPM2-dependent mechanism. Scientific Reports, 2018, 8, 3357.	3.3	25
15	New human combined immunodeficiency caused by interferon regulatory factor 4 (IRF4) deficiency inherited by uniparental isodisomy. Journal of Allergy and Clinical Immunology, 2018, 141, 1924-1927.e18.	2.9	29
16	The Activin A-Peroxisome Proliferator-Activated Receptor Gamma Axis Contributes to the Transcriptome of GM-CSF-Conditioned Human Macrophages. Frontiers in Immunology, 2018, 9, 31.	4.8	18
17	IVIg Promote Cross-Tolerance against Inflammatory Stimuli In Vitro and In Vivo. Journal of Immunology, 2018, 201, 41-52.	0.8	16
18	MAFB Determines Human Macrophage Anti-Inflammatory Polarization: Relevance for the Pathogenic Mechanisms Operating in Multicentric Carpotarsal Osteolysis. Journal of Immunology, 2017, 198, 2070-2081.	0.8	58

#	Article	IF	CITATIONS
19	Palmitate Conditions Macrophages for Enhanced Responses toward Inflammatory Stimuli via JNK Activation. Journal of Immunology, 2017, 199, 3858-3869.	0.8	57
20	Serotonin drives the acquisition of a profibrotic and anti-inflammatory gene profile through the 5-HT7R-PKA signaling axis. Scientific Reports, 2017, 7, 14761.	3.3	43
21	Alternative Anaphylactic Routes: The Potential Role of Macrophages. Frontiers in Immunology, 2017, 8, 515.	4.8	28
22	The potential of intravenous immunoglobulins for cancer therapy: a road that is worth taking?. Immunotherapy, 2016, 8, 601-612.	2.0	8
23	Evaluation of the potential therapeutic benefits of macrophage reprogramming in multiple myeloma. Blood, 2016, 128, 2241-2252.	1.4	54
24	Surfactant Protein A Prevents IFN-γ/IFN-γ Receptor Interaction and Attenuates Classical Activation of Human Alveolar Macrophages. Journal of Immunology, 2016, 197, 590-598.	0.8	44
25	Atypical Activin A and IL-10 Production Impairs Human CD16+ Monocyte Differentiation into Anti-Inflammatory Macrophages. Journal of Immunology, 2016, 196, 1327-1337.	0.8	49
26	Mice Lacking Endoglin in Macrophages Show an Impaired Immune Response. PLoS Genetics, 2016, 12, e1005935.	3.5	52
27	Subcutaneous Immunoglobulins: A Promising Alternative for Immunomodulation?. Current Pharmaceutical Design, 2016, 22, 6300-6305.	1.9	3
28	Polycationic carbosilane dendrimer decreases angiogenesis and tumor-associated macrophages in tumor-bearing mice. RSC Advances, 2015, 5, 104110-104115.	3.6	2
29	Use of carbosilane dendrimer to switch macrophage polarization for the acquisition of antitumor functions. Nanoscale, 2015, 7, 3857-3866.	5.6	36
30	Reshaping of Human Macrophage Polarization through Modulation of Glucose Catabolic Pathways. Journal of Immunology, 2015, 195, 2442-2451.	0.8	87
31	New insights on the transcriptional regulation of CD69 gene through a potent enhancer located in the conserved non-coding sequence 2. Molecular Immunology, 2015, 66, 171-179.	2.2	16
32	Macrophages from the synovium of active rheumatoid arthritis exhibit an activin Aâ€dependent proâ€inflammatory profile. Journal of Pathology, 2015, 235, 515-526.	4.5	138
33	CD163L1 and CLEC5A discriminate subsets of human resident and inflammatory macrophages in vivo. Journal of Leukocyte Biology, 2015, 98, 453-466.	3.3	81
34	Expression of endoglin isoforms in the myeloid lineage and their role during aging and macrophage polarization. Journal of Cell Science, 2014, 127, 2723-35.	2.0	27
35	CCL2 Shapes Macrophage Polarization by GM-CSF and M-CSF: Identification of CCL2/CCR2-Dependent Gene Expression Profile. Journal of Immunology, 2014, 192, 3858-3867.	0.8	364
36	Proteomic characterization of human proinflammatory M1 and antiâ€inflammatory M2 macrophages and their response to <i>Candida albicans</i> . Proteomics, 2014, 14, 1503-1518.	2.2	73

#	Article	IF	CITATIONS
37	Carbosilane dendrimers as gene delivery agents for the treatment of HIV infection. Journal of Controlled Release, 2014, 184, 51-57.	9.9	58
38	Intravenous Immunoglobulin Promotes Antitumor Responses by Modulating Macrophage Polarization. Journal of Immunology, 2014, 193, 5181-5189.	0.8	39
39	L-Kynurenine/Aryl Hydrocarbon Receptor Pathway Mediates Brain Damage After Experimental Stroke. Circulation, 2014, 130, 2040-2051.	1.6	100
40	Immunomodulation of human macrophages and myeloid cells by 2-substituted (1–3)-β-d-glucan from P. parvulus 2.6. Carbohydrate Polymers, 2014, 112, 109-113.	10.2	39
41	Serotonin Modulation of Macrophage Polarization: Inflammation and Beyond. Advances in Experimental Medicine and Biology, 2014, 824, 89-115.	1.6	56
42	The nuclear receptor LXRα controls the functional specialization of splenic macrophages. Nature Immunology, 2013, 14, 831-839.	14.5	147
43	Serotonin Skews Human Macrophage Polarization through HTR2B and HTR7. Journal of Immunology, 2013, 190, 2301-2310.	0.8	168
44	N2 Neutrophils, Novel Players in Brain Inflammation After Stroke. Stroke, 2013, 44, 3498-3508.	2.0	284
45	Ubiquitous Transgenic Overexpression of C-C Chemokine Ligand 2: A Model to Assess the Combined Effect of High Energy Intake and Continuous Low-Grade Inflammation. Mediators of Inflammation, 2013, 2013, 1-19.	3.0	13
46	Study of cationic carbosilane dendrimers as potential activating stimuli in macrophages. RSC Advances, 2013, 3, 23445.	3.6	10
47	Aryl hydrocarbon receptor contributes to the MEK/ERK-dependent maintenance of the immature state of human dendritic cells. Blood, 2013, 121, e108-e117.	1.4	37
48	Rosiglitazone-induced CD36 up-regulation resolves inflammation by PPARÎ ³ and 5-LO-dependent pathways. Journal of Leukocyte Biology, 2013, 95, 587-598.	3.3	66
49	Influence of low oxygen tensions on macrophage polarization. Immunobiology, 2012, 217, 1233-1240.	1.9	47
50	The Prolyl Hydroxylase PHD3 Identifies Proinflammatory Macrophages and Its Expression Is Regulated by Activin A. Journal of Immunology, 2012, 189, 1946-1954.	0.8	51
51	Activin A skews macrophage polarization by promoting a proinflammatory phenotype and inhibiting the acquisition of anti-inflammatory macrophage markers. Blood, 2011, 117, 5092-5101.	1.4	223
52	Dendritic Cell-Specific ICAM-3–Grabbing Nonintegrin Expression on M2-Polarized and Tumor-Associated Macrophages Is Macrophage-CSF Dependent and Enhanced by Tumor-Derived IL-6 and IL-10. Journal of Immunology, 2011, 186, 2192-2200.	0.8	126
53	Estradiol impairs the Th17 immune response against <i>Candida albicans</i> . Journal of Leukocyte Biology, 2011, 91, 159-165.	3.3	41
54	Plasmacytoid dendritic cells resident in human thymus drive natural Treg cell development. Blood, 2010, 115, 5366-5375.	1.4	177

#	Article	IF	CITATIONS
55	Naturally occurring 2-substituted (1,3)-β-d-glucan producing Lactobacillus suebicus and Pediococcus parvulus strains with potential utility in the production of functional foods. Bioresource Technology, 2010, 101, 9254-9263.	9.6	90
56	Biogenic amines in fermented foods. European Journal of Clinical Nutrition, 2010, 64, S95-S100.	2.9	348
57	<i>Candida albicans</i> β-Glucan Exposure Is Controlled by the Fungal <i>CEK1</i> -Mediated Mitogen-Activated Protein Kinase Pathway That Modulates Immune Responses Triggered through Dectin-1. Infection and Immunity, 2010, 78, 1426-1436.	2.2	90
58	Polysialylated neuropilin-2 enhances human dendritic cell migration through the basic C-terminal region of CCL21. Glycobiology, 2010, 20, 1139-1146.	2.5	53
59	Epitope mapping on the dendritic cell-specific ICAM-3-grabbing non-integrin (DC-SIGN) pathogen-attachment factor. Molecular Immunology, 2010, 47, 840-848.	2.2	6
60	The novel RUNX3/p33 isoform is induced upon monocyte-derived dendritic cell maturation and downregulates IL-8 expression. Immunobiology, 2010, 215, 812-820.	1.9	19
61	Heme Oxygenase-1 expression in M-CSF-polarized M2 macrophages contributes to LPS-induced IL-10 release. Immunobiology, 2010, 215, 788-795.	1.9	181
62	Folate Receptor β Is Expressed by Tumor-Associated Macrophages and Constitutes a Marker for M2 Anti-inflammatory/Regulatory Macrophages. Cancer Research, 2009, 69, 9395-9403.	0.9	317
63	Probiotic Properties of the 2-Substituted (1,3)-β- <scp>d</scp> -Glucan-Producing Bacterium <i>Pediococcus parvulus</i> 2.6. Applied and Environmental Microbiology, 2009, 75, 4887-4891.	3.1	86
64	The pathogen receptor liver and lymph node sinusoidal endotelial cell C-type lectin is expressed in human Kupffer cells and regulated by PU.1. Hepatology, 2009, 49, 287-296.	7.3	40
65	Probiotic strains: survival under simulated gastrointestinal conditions, in vitro adhesion to Caco-2 cells and effect on cytokine secretion. European Food Research and Technology, 2008, 227, 1475-1484.	3.3	86
66	AM3, a natural glycoconjugate, induces the functional maturation of human dendritic cells. British Journal of Pharmacology, 2008, 154, 698-708.	5.4	14
67	Structural Requirements for Multimerization of the Pathogen Receptor Dendritic Cell-specific ICAM3-grabbing Non-integrin (CD209) on the Cell Surface. Journal of Biological Chemistry, 2008, 283, 3889-3903.	3.4	40
68	AM3 Modulates Dendritic Cell Pathogen Recognition Capabilities by Targeting DC-SIGN. Antimicrobial Agents and Chemotherapy, 2007, 51, 2313-2323.	3.2	15
69	The DC-SIGN–related lectin LSECtin mediates antigen capture and pathogen binding by human myeloid cells. Blood, 2007, 109, 5337-5345.	1.4	87
70	Dendritic cells: still a promising tool for cancer immunotherapy. Clinical and Translational Oncology, 2007, 9, 77-82.	2.4	10
71	Analysis of DC-SIGN (CD209) Functional Variants in Patients with Tuberculosis. Human Immunology, 2006, 67, 808-811.	2.4	43
72	DC-SIGN ligation on dendritic cells results in ERK and PI3K activation and modulates cytokine production. Blood, 2006, 107, 3950-3958.	1.4	216

#	Article	IF	CITATIONS
73	RUNX3 Negatively Regulates CD36 Expression in Myeloid Cell Lines. Journal of Immunology, 2006, 177, 2107-2114.	0.8	22
74	1D Saturation Transfer Difference NMR Experiments on Living Cells: The DC-SIGN/Oligomannose Interaction. Angewandte Chemie - International Edition, 2005, 44, 296-298.	13.8	91
75	The Chemokine Receptor CCR7 Activates in Dendritic Cells Two Signaling Modules That Independently Regulate Chemotaxis and Migratory Speed. Journal of Immunology, 2005, 174, 4070-4080.	0.8	212
76	PU.1 Regulates the Tissue-specific Expression of Dendritic Cell-specific Intercellular Adhesion Molecule (ICAM)-3-grabbing Nonintegrin. Journal of Biological Chemistry, 2005, 280, 33123-33131.	3.4	29
77	Regulated recruitment of DC-SIGN to cell-cell contact regions during zymosan-induced human dendritic cell aggregation. Journal of Leukocyte Biology, 2005, 77, 699-709.	3.3	25
78	RUNX3 regulates the activity of the CD11a and CD49d integrin gene promoters. Immunobiology, 2005, 210, 133-139.	1.9	21
79	DC-SIGN mediates the binding of Aspergillus fumigatus and keratinophylic fungi by human dendritic cells. Immunobiology, 2005, 210, 175-183.	1.9	58
80	Role of the C-type lectins DC-SIGN and L-SIGN in Leishmania interaction with host phagocytes. Immunobiology, 2005, 210, 185-193.	1.9	38
81	Adhesion molecules in human dendritic cells. Current Opinion in Investigational Drugs, 2005, 6, 1103-11.	2.3	12
82	Regulated Expression of the Pathogen Receptor Dendritic Cell-specific Intercellular Adhesion Molecule 3 (ICAM-3)-grabbing Nonintegrin in THP-1 Human Leukemic Cells, Monocytes, and Macrophages. Journal of Biological Chemistry, 2004, 279, 25680-25688.	3.4	88
83	The Dendritic Cell Receptor DC-SIGN Discriminates among Species and Life Cycle Forms ofLeishmania. Journal of Immunology, 2004, 172, 1186-1190.	0.8	68
84	Dendritic Cell-Specific Intercellular Adhesion Molecule 3-Grabbing Nonintegrin Mediates Binding and Internalization of <i>Aspergillus fumigatus</i> Conidia by Dendritic Cells and Macrophages. Journal of Immunology, 2004, 173, 5635-5643.	0.8	195
85	Chemokine receptor CCR7 induces intracellular signaling that inhibits apoptosis of mature dendritic cells. Blood, 2004, 104, 619-625.	1.4	158
86	Peritoneal dialysis solutions inhibit the differentiation and maturation of human monocyte-derived dendritic cells: effect of lactate and glucose-degradation products. Journal of Leukocyte Biology, 2003, 73, 482-492.	3.3	59
87	Migration of human blood dendritic cells across endothelial cell monolayers: adhesion molecules and chemokines involved in subset-specific transmigration. Journal of Leukocyte Biology, 2003, 73, 639-649.	3.3	107
88	RUNX/AML and C/EBP factors regulate CD11a integrin expression in myeloid cells through overlapping regulatory elements. Blood, 2003, 102, 3252-3261.	1.4	50
89	DC-SIGN (CD209) Expression Is IL-4 Dependent and Is Negatively Regulated by IFN, TGF-β, and Anti-Inflammatory Agents. Journal of Immunology, 2002, 168, 2634-2643.	0.8	273
90	Dendritic Cell (DC)-specific Intercellular Adhesion Molecule 3 (ICAM-3)-grabbing Nonintegrin (DC-SIGN,) Tj ETC	2q0 0 0 rgB1 3.4	[/Overlock 10 146

Biological Chemistry, 2002, 277, 36766-36769.

#	Article	IF	CITATIONS
91	C-Type Lectins DC-SIGN and L-SIGN Mediate Cellular Entry by Ebola Virus in cis and in trans. Journal of Virology, 2002, 76, 6841-6844.	3.4	604
92	ITAM-Based Interaction of ERM Proteins with Syk Mediates Signaling by the Leukocyte Adhesion Receptor PSGL-1. Immunity, 2002, 17, 401-412.	14.3	200
93	c-Myc inhibits CD11a and CD11c leukocyte integrin promoters. European Journal of Immunology, 2000, 30, 2465-2471.	2.9	10
94	Maturation-Dependent Expression and Function of the CD49d Integrin on Monocyte-Derived Human Dendritic Cells. Journal of Immunology, 2000, 165, 4338-4345.	0.8	72
95	The α2 and α5 integrin genes: identification of transcription factors that regulate promoter activity in epidermal keratinocytes. FEBS Letters, 2000, 474, 201-207.	2.8	39
96	CD11c Integrin Gene Promoter Activity During Myeloid Differentiation. Leukemia and Lymphoma, 1997, 25, 415-425.	1.3	40
97	PU.1 negatively regulates the CD11c integrin gene promoter through recognition of the major transcriptional start site. European Journal of Immunology, 1997, 27, 1843-1847.	2.9	36
98	Identification of Sp1-binding sites in the CD11c (p150,95α) and CD11a (LFA-1α) integrin subunit promoters and their involvement in the tissuespecific expression of CD11c. European Journal of Immunology, 1995, 25, 3496-3503.	2.9	36
99	Regulation of Expression of the LFA-1 and p150,95 Leukocyte Integrins: Involvement of the CD11a and CD11c Gene Promoters. Immunobiology, 1995, 193, 315-321.	1.9	1
100	Regulated expression of p150,95 (CD11c/CD18; αX/β2) and VLA-4 (CD49d/CD29; α4/β1) integrins during myel cell differentiation. European Journal of Immunology, 1994, 24, 41-47.	oid 2.9	35
101	Characterization of two new CD18 alleles causing severe leukocyte adhesion deficiency. European Journal of Immunology, 1993, 23, 2792-2798.	2.9	24
102	Mapping of the human VLA-α4 gene to chromosome 2q31-q32. European Journal of Immunology, 1992, 22, 587-590.	2.9	12
103	Molecular basis for a severe case of leukocyte adhesion deficiency. European Journal of Immunology, 1992, 22, 1877-1881.	2.9	32
104	Functional role of α2/β1 and α4/β1 integrins in leukocyte intercellular adhesion induced through the common β1 subunit. European Journal of Immunology, 1992, 22, 3111-3119.	2.9	65
105	Differential expression of VLA-4 integrin by resident and peripheral blood B lymphocytes. Acquisition of functionally active $\hat{I}\pm4\hat{I}^21$ -fibronectin receptors upon B cell activation. European Journal of Immunology, 1991, 21, 2437-2445.	2.9	52
106	The Leukocyte Integrins. Advances in Immunology, 1989, 46, 149-182.	2.2	491
107	A competitive solid-phase radioimmunoassay for quantitation of the major allergen of Parietaria pollen. Journal of Immunological Methods, 1985, 83, 83-88.	1.4	10
108	Isolation of the major IgE-binding protein from Parietaria judaica pollen using monoclonal antibodies. Molecular Immunology, 1985, 22, 1081-1089.	2.2	24

#	Article	IF	CITATIONS
109	Monoclonal antibodies to three distinct epitopes on human IgE: Their use for determination of allergen-specific IgE. Journal of Immunological Methods, 1984, 73, 367-378.	1.4	92