David A Robinson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8128686/publications.pdf

Version: 2024-02-01

28 papers

1,686 citations

20 h-index 477307 29 g-index

32 all docs 32 docs citations

times ranked

32

2256 citing authors

#	Article	IF	CITATIONS
1	Targeting a critical step in fungal hexosamine biosynthesis. Journal of Biological Chemistry, 2020, 295, 8678-8691.	3.4	16
2	Discovery of an Allosteric Binding Site in Kinetoplastid Methionyl-tRNA Synthetase. ACS Infectious Diseases, 2020, 6, 1044-1057.	3.8	11
3	Identification of inhibitors of an unconventional Trypanosoma brucei kinetochore kinase. PLoS ONE, 2019, 14, e0217828.	2.5	6
4	Lysyl-tRNA synthetase as a drug target in malaria and cryptosporidiosis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7015-7020.	7.1	94
5	A Molecular Hybridization Approach for the Design of Potent, Highly Selective, and Brain-Penetrant <i>N</i> -Myristoyltransferase Inhibitors. Journal of Medicinal Chemistry, 2018, 61, 8374-8389.	6.4	41
6	Chemical Validation of Methionyl-tRNA Synthetase as a Druggable Target in <i>Leishmania donovani</i> . ACS Infectious Diseases, 2017, 3, 718-727.	3.8	22
7	Design and Synthesis of Brain Penetrant Trypanocidal <i>N</i> Journal of Medicinal Chemistry, 2017, 60, 9790-9806.	6.4	14
8	Development of Smallâ€Molecule <i>Trypanosoma brucei N</i> â€Myristoyltransferase Inhibitors: Discovery and Optimisation of a Novel Binding Mode. ChemMedChem, 2015, 10, 1821-1836.	3.2	20
9	<i>N</i> -Myristoyltransferase Is a Cell Wall Target in <i>Aspergillus fumigatus</i> . ACS Chemical Biology, 2015, 10, 1425-1434.	3.4	38
10	Identification and structure solution of fragment hits against kinetoplastid <i>N</i> -myristoyltransferase. Acta Crystallographica Section F, Structural Biology Communications, 2015, 71, 586-593.	0.8	2
11	Phosphorylation of Sli15 by Ipl1 Is Important for Proper CPC Localization and Chromosome Stability in Saccharomyces cerevisiae. PLoS ONE, 2014, 9, e89399.	2.5	10
12	Bisubstrate UDP–peptide conjugates as human O-GlcNAc transferase inhibitors. Biochemical Journal, 2014, 457, 497-502.	3.7	57
13	The histone chaperones Vps75 and Nap1 form ring-like, tetrameric structures in solution. Nucleic Acids Research, 2014, 42, 6038-6051.	14.5	37
14	Lead Optimization of a Pyrazole Sulfonamide Series of <i>Trypanosoma bruceiN</i> -Myristoyltransferase Inhibitors: Identification and Evaluation of CNS Penetrant Compounds as Potential Treatments for Stage 2 Human African Trypanosomiasis. Journal of Medicinal Chemistry, 2014, 57, 9855-9869.	6.4	57
15	Discovery of a Novel Class of Orally Active Trypanocidal <i>N</i> Journal of Medicinal Chemistry, 2012, 55, 140-152.	6.4	102
16	O-GlcNAc transferase invokes nucleotide sugar pyrophosphate participation in catalysis. Nature Chemical Biology, 2012, 8, 969-974.	8.0	123
17	Design, Synthesis and Biological Evaluation of Novel Inhibitors of <i>Trypanosoma brucei</i> Pteridine Reductaseâ€1. ChemMedChem, 2011, 6, 302-308.	3.2	39
18	Novel Ligands for a Purine Riboswitch Discovered by RNA-Ligand Docking. Chemistry and Biology, 2011, 18, 324-335.	6.0	93

#	Article	lF	CITATION
19	Structure-guided design of \hat{l}_{\pm} -amino acid-derived Pin1 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 586-590.	2.2	73
20	Development and validation of a cytochrome c-coupled assay for pteridine reductase 1 and dihydrofolate reductase. Analytical Biochemistry, 2010, 396, 194-203.	2.4	23
21	Discovery of cell-active phenyl-imidazole Pin1 inhibitors by structure-guided fragment evolution. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 6483-6488.	2.2	86
22	N-myristoyltransferase inhibitors as new leads to treat sleeping sickness. Nature, 2010, 464, 728-732.	27.8	272
23	One Scaffold, Three Binding Modes: Novel and Selective Pteridine Reductase 1 Inhibitors Derived from Fragment Hits Discovered by Virtual Screening. Journal of Medicinal Chemistry, 2009, 52, 4454-4465.	6.4	96
24	Mechanism of Enzymatic Fluorination in <i>Streptomyces cattleya</i> . Journal of the American Chemical Society, 2007, 129, 14597-14604.	13.7	102
25	Crystal Structures of Helicobacter pylori Type II Dehydroquinase Inhibitor Complexes:  New Directions for Inhibitor Design. Journal of Medicinal Chemistry, 2006, 49, 1282-1290.	6.4	27
26	Substrate specificity in enzymatic fluorination. The fluorinase from Streptomyces cattleya accepts 2′-deoxyadenosine substrates. Organic and Biomolecular Chemistry, 2006, 4, 1458.	2.8	35
27	The Fluorinase fromStreptomyces cattleya Is Also a Chlorinase. Angewandte Chemie - International Edition, 2006, 45, 759-762.	13.8	98
28	The Structure and Mechanism of the Type II Dehydroquinase from Streptomyces coelicolor. Structure, 2002, 10, 493-503.	3.3	77