Andrew N Blackford

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8128407/publications.pdf

Version: 2024-02-01

30 3,297 23 29 g-index

31 31 31 31 5337

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Mechanism of Bloom syndrome complex assembly required for double Holliday junction dissolution and genome stability. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	7.1	12
2	The CIP2A-TOPBP1 complex safeguards chromosomal stability during mitosis. Nature Communications, 2022, 13, .	12.8	20
3	The Bloom syndrome complex senses RPA-coated single-stranded DNA to restart stalled replication forks. Nature Communications, 2021, 12, 585.	12.8	48
4	Treacle controls the nucleolar response to rDNA breaks via TOPBP1 recruitment and ATR activation. Nature Communications, 2020, 11 , 123 .	12.8	53
5	CCDC61/VFL3 Is a Paralog of SAS6 and Promotes Ciliary Functions. Structure, 2020, 28, 674-689.e11.	3.3	16
6	How Cells Respond to DNA Breaks in Mitosis. Trends in Biochemical Sciences, 2020, 45, 321-331.	7.5	44
7	MDC1 Interacts with TOPBP1 to Maintain Chromosomal Stability during Mitosis. Molecular Cell, 2019, 74, 571-583.e8.	9.7	97
8	The ASCIZ-DYNLL1 axis promotes 53BP1-dependent non-homologous end joining and PARP inhibitor sensitivity. Nature Communications, 2018, 9, 5406.	12.8	74
9	PGBD5 promotes site-specific oncogenic mutations in human tumors. Nature Genetics, 2017, 49, 1005-1014.	21.4	69
10	ATM, ATR, and DNA-PK: The Trinity at the Heart of the DNA Damage Response. Molecular Cell, 2017, 66, 801-817.	9.7	1,319
11	Structural Insight into BLM Recognition by TopBP1. Structure, 2017, 25, 1582-1588.e3.	3.3	24
12	Specific Roles of XRCC4 Paralogs PAXX and XLF during V(D)J Recombination. Cell Reports, 2016, 16, 2967-2979.	6.4	70
13	Synthetic lethality between PAXX and XLF in mammalian development. Genes and Development, 2016, 30, 2152-2157.	5.9	68
14	TRAIP promotes DNA damage response during genome replication and is mutated in primordial dwarfism. Nature Genetics, 2016, 48, 36-43.	21.4	74
15	USP4 Auto-Deubiquitylation Promotes Homologous Recombination. Molecular Cell, 2015, 60, 362-373.	9.7	67
16	PAXX, a paralog of XRCC4 and XLF, interacts with Ku to promote DNA double-strand break repair. Science, 2015, 347, 185-188.	12.6	252
17	BOD1L Is Required to Suppress Deleterious Resection of Stressed Replication Forks. Molecular Cell, 2015, 59, 462-477.	9.7	146
18	TopBP1 Interacts with BLM to Maintain Genome Stability but Is Dispensable for Preventing BLM Degradation. Molecular Cell, 2015, 57, 1133-1141.	9.7	59

#	Article	IF	CITATION
19	TOPBP1 recruits TOP2A to ultra-fine anaphase bridges to aid in their resolution. Nature Communications, 2015, 6, 6572.	12.8	67
20	Regulation of DNA-End Resection by hnRNPU-like Proteins Promotes DNA Double-Strand Break Signaling and Repair. Molecular Cell, 2012, 45, 505-516.	9.7	160
21	The DNA translocase activity of FANCM protects stalled replication forks. Human Molecular Genetics, 2012, 21, 2005-2016.	2.9	71
22	When cleavage is not attractive: Non-catalytic inhibition of ubiquitin chains at DNA double-strand breaks by OTUB1. DNA Repair, 2011, 10, 245-249.	2.8	13
23	Serotype-Specific Inactivation of the Cellular DNA Damage Response during Adenovirus Infection. Journal of Virology, 2011, 85, 2201-2211.	3.4	60
24	ATR activation and replication fork restart are defective in FANCM-deficient cells. EMBO Journal, 2010, 29, 806-818.	7.8	143
25	A novel ATRibute of FANCM. Cell Cycle, 2010, 9, 1453-1455.	2.6	0
26	Adenovirus 12 E4orf6 inhibits ATR activation by promoting TOPBP1 degradation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12251-12256.	7.1	71
27	Mediator of DNA Damage Checkpoint 1 (MDC1) Regulates Mitotic Progression. Journal of Biological Chemistry, 2009, 284, 33939-33948.	3.4	43
28	Adenovirus E1B 55-Kilodalton Protein: Multiple Roles in Viral Infection and Cell Transformation. Journal of Virology, 2009, 83, 4000-4012.	3.4	91
29	Adenovirus 5 E1A is responsible for increased expression of insulin receptor substrate 4 in established adenovirus 5-transformed cell lines and interacts with IRS components activating the PI3 kinase/Akt signalling pathway. Oncogene, 2009, 28, 686-697.	5.9	18
30	A Role for E1B-AP5 in ATR Signaling Pathways during Adenovirus Infection. Journal of Virology, 2008, 82, 7640-7652.	3.4	48