Jeffrey G Tasker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8127644/publications.pdf Version: 2024-02-01

IFFEDEV C. TASKED

#	Article	IF	CITATIONS
1	Nongenomic Glucocorticoid Inhibition via Endocannabinoid Release in the Hypothalamus: A Fast Feedback Mechanism. Journal of Neuroscience, 2003, 23, 4850-4857.	3.6	678
2	Rapid Glucocorticoid Signaling via Membrane-Associated Receptors. Endocrinology, 2006, 147, 5549-5556.	2.8	332
3	Physiological Mapping of Local Inhibitory Inputs to the Hypothalamic Paraventricular Nucleus. Journal of Neuroscience, 1996, 16, 7151-7160.	3.6	297
4	Endocannabinoid signaling, glucocorticoid-mediated negative feedback, and regulation of the hypothalamic-pituitary-adrenal axis. Neuroscience, 2012, 204, 5-16.	2.3	278
5	Fast Feedback Inhibition of the HPA Axis by Glucocorticoids Is Mediated by Endocannabinoid Signaling. Endocrinology, 2010, 151, 4811-4819.	2.8	269
6	Rapid Glucocorticoid-Mediated Endocannabinoid Release and Opposing Regulation of Glutamate and γ-Aminobutyric Acid Inputs to Hypothalamic Magnocellular Neurons. Endocrinology, 2005, 146, 4292-4301.	2.8	263
7	Opposing Crosstalk between Leptin and Glucocorticoids Rapidly Modulates Synaptic Excitation via Endocannabinoid Release. Journal of Neuroscience, 2006, 26, 6643-6650.	3.6	245
8	Local circuit regulation of paraventricular nucleus stress integration. Pharmacology Biochemistry and Behavior, 2002, 71, 457-468.	2.9	240
9	Mechanisms of rapid glucocorticoid feedback inhibition of the hypothalamic–pituitary–adrenal axis. Stress, 2011, 14, 398-406.	1.8	222
10	Electrophysiological properties of neurones in the region of the paraventricular nucleus in slices of rat hypothalamus Journal of Physiology, 1991, 434, 271-293.	2.9	216
11	Functional Interactions between Stress and the Endocannabinoid System: From Synaptic Signaling to Behavioral Output. Journal of Neuroscience, 2010, 30, 14980-14986.	3.6	202
12	Glucocorticoids Regulate Glutamate and GABA Synapse-Specific Retrograde Transmission via Divergent Nongenomic Signaling Pathways. Journal of Neuroscience, 2009, 29, 393-401.	3.6	177
13	Paraventricular Hypothalamic Mechanisms of Chronic Stress Adaptation. Frontiers in Endocrinology, 2016, 7, 137.	3.5	171
14	Physiological Evidence for Local Excitatory Synaptic Circuits in the Rat Hypothalamus. Journal of Neurophysiology, 1997, 77, 3396-3400.	1.8	170
15	Osmolality-induced changes in extracellular volume alter epileptiform bursts independent of chemical synapses in the rat: Importance of non-synaptic mechanisms in hippocampal epileptogenesis. Neuroscience Letters, 1990, 120, 267-270.	2.1	163
16	Voltageâ€gated currents distinguish parvocellular from magnocellular neurones in the rat hypothalamic paraventricular nucleus. Journal of Physiology, 2000, 523, 193-209.	2.9	156
17	Noradrenergic Excitation of Magnocellular Neurons in the Rat Hypothalamic Paraventricular Nucleus via Intranuclear Glutamatergic Circuits. Journal of Neuroscience, 1998, 18, 10619-10628.	3.6	138
18	Presynaptic Modulation by Metabotropic Glutamate Receptors of Excitatory and Inhibitory Synaptic Inputs to Hypothalamic Magnocellular Neurons. Journal of Neurophysiology, 1997, 77, 527-527.	1.8	137

#	Article	IF	CITATIONS
19	Role of the paraventricular nucleus microenvironment in stress integration*. European Journal of Neuroscience, 2002, 16, 381-385.	2.6	137
20	Neurosteroid Modulation of GABA IPSCs Is Phosphorylation Dependent. Journal of Neuroscience, 2000, 20, 3067-3075.	3.6	131
21	Chronic stressâ€induced neurotransmitter plasticity in the PVN. Journal of Comparative Neurology, 2009, 517, 156-165.	1.6	128
22	Noradrenergic regulation of parvocellular neurons in the rat hypothalamic paraventricular nucleus. Neuroscience, 2000, 96, 743-751.	2.3	111
23	Synaptic regulation of the hypothalamic–pituitary–adrenal axis and its modulation by glucocorticoids and stress. Frontiers in Cellular Neuroscience, 2012, 6, 24.	3.7	108
24	Activity-dependent release and actions of endocannabinoids in the rat hypothalamic supraoptic nucleus. Journal of Physiology, 2005, 569, 751-760.	2.9	104
25	Local inhibitory synaptic inputs to neurones of the paraventricular nucleus in slices of rat hypothalamus Journal of Physiology, 1993, 469, 179-192.	2.9	97
26	GABA Is Excitatory in Adult Vasopressinergic Neuroendocrine Cells. Journal of Neuroscience, 2012, 32, 572-582.	3.6	87
27	Acute Stress Suppresses Synaptic Inhibition and Increases Anxiety via Endocannabinoid Release in the Basolateral Amygdala. Journal of Neuroscience, 2016, 36, 8461-8470.	3.6	86
28	Immunohistochemical differentiation of electrophysiologically defined neuronal populations in the region of the rat hypothalamic paraventricular nucleus. Journal of Comparative Neurology, 1991, 307, 405-416.	1.6	85
29	Glial Regulation of Neuronal Function: From Synapse to Systems Physiology. Journal of Neuroendocrinology, 2012, 24, 566-576.	2.6	80
30	Electrophysiology of GABA-mediated synaptic transmission and possible roles in epilepsy. Neurochemical Research, 1991, 16, 251-262.	3.3	76
31	Presynaptic Noradrenergic Regulation of Glutamate Inputs to Hypothalamic Magnocellular Neurones. Journal of Neuroendocrinology, 2003, 15, 803-810.	2.6	75
32	Rapid Glucocorticoid Actions in the Hypothalamus as a Mechanism of Homeostatic Integration. Obesity, 2006, 14, 259S-265S.	3.0	75
33	Dehydration-Induced Synaptic Plasticity in Magnocellular Neurons of the Hypothalamic Supraoptic Nucleus. Endocrinology, 2004, 145, 5141-5149.	2.8	73
34	Glucocorticoids shift arachidonic acid metabolism toward endocannabinoid synthesis: A non-genomic anti-inflammatory switch. European Journal of Pharmacology, 2008, 583, 322-339.	3.5	71
35	Rapid Nongenomic Glucocorticoid Actions in Male Mouse Hypothalamic Neuroendocrine Cells Are Dependent on the Nuclear Glucocorticoid Receptor. Endocrinology, 2015, 156, 2831-2842.	2.8	71
36	Neuroendocrine Function After Hypothalamic Depletion of Glucocorticoid Receptors in Male and Female Mice. Endocrinology, 2015, 156, 2843-2853.	2.8	69

#	Article	IF	CITATIONS
37	Synaptic transmission in human neocortex removed for treatment of intractable epilepsy in children. Annals of Neurology, 1990, 28, 503-511.	5.3	67
38	Increased tonic activation of presynaptic metabotropic glutamate receptors in the rat supraoptic nucleus following chronic dehydration. Journal of Physiology, 2003, 551, 815-823.	2.9	63
39	Local Glutamatergic and GABAergic Synaptic Circuits and Metabotropic Glutamate Receptors in the Hypothalamic Paraventricular and Supraoptic Nuclei. Advances in Experimental Medicine and Biology, 1998, 449, 117-121.	1.6	60
40	Sensitization of the Hypothalamic-Pituitary-Adrenal Axis in a Male Rat Chronic Stress Model. Endocrinology, 2016, 157, 2346-2355.	2.8	59
41	Local synaptic circuits and epileptiform activity in slices of neocortex from children with intractable epilepsy. Journal of Neurophysiology, 1992, 67, 496-507.	1.8	51
42	Somatoâ€dendritic vasopressin and oxytocin secretion in endocrine and autonomic regulation. Journal of Neuroendocrinology, 2020, 32, e12856.	2.6	51
43	Modulation of Multiple Potassium Currents by Metabotropic Glutamate Receptors in Neurons of the Hypothalamic Supraoptic Nucleus. Journal of Neurophysiology, 1997, 78, 3428-3437.	1.8	49
44	ProSAAS-Derived Peptides are Colocalized with Neuropeptide Y and Function as Neuropeptides in the Regulation of Food Intake. PLoS ONE, 2011, 6, e28152.	2.5	48
45	Electrical properties of neocortical neurons in slices from children with intractable epilepsy. Journal of Neurophysiology, 1996, 75, 931-939.	1.8	41
46	Glial Control of Endocannabinoid Heterosynaptic Modulation in Hypothalamic Magnocellular Neuroendocrine Cells. Journal of Neuroscience, 2013, 33, 18331-18342.	3.6	39
47	Nutritional State-Dependent Ghrelin Activation of Vasopressin Neurons via Retrograde Trans-Neuronal–Glial Stimulation of Excitatory GABA Circuits. Journal of Neuroscience, 2014, 34, 6201-6213.	3.6	39
48	Afferent projections from the mammary glands to the spinal cord in the lactating rat—l. A neuroanatomical study using the transganglionic transport of horseradish peroxidase-wheatgerm agglutinin. Neuroscience, 1986, 19, 495-509.	2.3	38
49	A Slow Transient Potassium Current Expressed in a Subset of Neurosecretory Neurons of the Hypothalamic Paraventricular Nucleus. Journal of Neurophysiology, 2000, 84, 1814-1825.	1.8	38
50	Chapter 9 Functional synaptic plasticity in hypothalamic magnocellular neurons. Progress in Brain Research, 2002, 139, 113-119.	1.4	38
51	Factors promoting vulnerability to dysregulated stress reactivity and stressâ€related disease. Journal of Neuroendocrinology, 2018, 30, e12641.	2.6	38
52	Astrocytes Amplify Neuronal Dendritic Volume Transmission Stimulated by Norepinephrine. Cell Reports, 2019, 29, 4349-4361.e4.	6.4	38
53	Why do we need nongenomic glucocorticoid mechanisms?. Frontiers in Neuroendocrinology, 2014, 35, 72-75.	5.2	36
54	Rapid glucocorticoid-induced activation of TRP and CB1 receptors causes biphasic modulation of glutamate release in gastric-related hypothalamic preautonomic neurons. Frontiers in Neuroscience, 2013, 7, 3.	2.8	33

#	Article	IF	CITATIONS
55	Somato-dendritic mechanisms underlying the electrophysiological properties of hypothalamic magnocellular neuroendocrine cells: A multicompartmental model study. Journal of Computational Neuroscience, 2007, 23, 143-168.	1.0	31
56	Internuclear coupling of hypothalamic magnocellular nuclei by glutamate synaptic circuits. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 291, R102-R111.	1.8	29
57	Endocannabinoid Regulation of Neuroendocrine Systems. International Review of Neurobiology, 2015, 125, 163-201.	2.0	29
58	Endogenous Cannabinoids Take the Edge off Neuroendocrine Responses to Stress. Endocrinology, 2004, 145, 5429-5430.	2.8	28
59	Membrane-initiated nuclear trafficking of the glucocorticoid receptor in hypothalamic neurons. Steroids, 2019, 142, 55-64.	1.8	27
60	Neurophysiology of neocortical slices resected from children undergoing surgical treatment for epilepsy. Journal of Neuroscience Methods, 1995, 59, 49-58.	2.5	26
61	In vivo Intracellular Recording of Neurons in the Supraoptic Nucleus of the Rat Hypothalamus. Journal of Neuroendocrinology, 1991, 3, 383-386.	2.6	25
62	Synchronized bursts of miniature inhibitory postsynaptic currents. Journal of Physiology, 2010, 588, 939-951.	2.9	25
63	Comparison of three intracellular markers for combined electrophysiological, morphological and immunohistochemical analyses. Journal of Neuroscience Methods, 1991, 38, 129-143.	2.5	24
64	Rapid synapse-specific regulation of hypothalamic magnocellular neurons by glucocorticoids. Progress in Brain Research, 2008, 170, 379-388.	1.4	23
65	Transcriptomic Analysis of the Osmotic and Reproductive Remodeling of the Female Rat Supraoptic Nucleus. Endocrinology, 2011, 152, 3483-3491.	2.8	23
66	Dexamethasone induces rapid promotion of norepinephrine-mediated vascular smooth muscle cell contraction. Molecular Medicine Reports, 2013, 7, 549-554.	2.4	21
67	Further evidence for a membrane receptor that binds glucocorticoids in the rodent hypothalamus. Steroids, 2016, 114, 33-40.	1.8	19
68	Intrinsic and synaptic mechanisms of hypothalamic neurons studied with slice and explant preparations. Journal of Neuroscience Methods, 1989, 28, 59-69.	2.5	18
69	Regulation of Neuronal Activity in Hypothalamic Vasopressin Neurons. Interdisciplinary Information Sciences, 2015, 21, 225-234.	0.4	18
70	Rapid Central Corticosteroid Effects: Evidence for Membrane Glucocorticoid Receptors in the Brain. Integrative and Comparative Biology, 2005, 45, 665-671.	2.0	17
71	Advances in the neurophysiology of magnocellular neuroendocrine cells. Journal of Neuroendocrinology, 2020, 32, e12826.	2.6	17
72	Cell signaling dependence of rapid glucocorticoid-induced endocannabinoid synthesis in hypothalamic neuroendocrine cells. Neurobiology of Stress, 2019, 10, 100158.	4.0	16

#	Article	IF	CITATIONS
73	Gq neuromodulation of BLA parvalbumin interneurons induces burst firing and mediates fear-associated network and behavioral state transition in mice. Nature Communications, 2022, 13, 1290.	12.8	15
74	Recurrent mammary gland contractions induced by a low tonic release of oxytocin in rats. Journal of Endocrinology, 1985, 107, 89-96.	2.6	12
75	Purity and stability of the membrane-limited glucocorticoid receptor agonist dexamethasone-BSA. Steroids, 2019, 142, 2-5.	1.8	11
76	The interplay between glutamatergic circuits and oxytocin neurons in the hypothalamus and its relevance to neurodevelopmental disorders. Journal of Neuroendocrinology, 2021, 33, e13061.	2.6	11
77	The effects of neonatal capsaicin treatment on the sensory innervation of the nipple and on the milk ejection reflex in the rat. Experimental Brain Research, 1988, 73, 32-38.	1.5	10
78	Connections from the subfornical organ to the oxytocin and vasopressin systems in the lactating rat. A study using electrical stimulations, lesions and electrophysiological recordings. Brain Research, 1995, 672, 1-13.	2.2	10
79	Sucrose-induced plasticity in the basolateral amygdala in a â€~comfort' feeding paradigm. Brain Structure and Function, 2017, 222, 4035-4050.	2.3	10
80	Shortâ€ŧerm potentiation of GABAergic synaptic inputs to vasopressin and oxytocin neurones. Journal of Physiology, 2014, 592, 4221-4233.	2.9	8
81	Membrane Properties of Identified Guinea-Pig Paraventricular Neurons and their Response to an Opioid ?-Receptor Agonist: Evidence for an Increase in K+Conductance. Journal of Neuroendocrinology, 1993, 5, 233-240.	2.6	7
82	Labile Calcium-Permeable AMPA Receptors Constitute New Glutamate Synapses Formed in Hypothalamic Neuroendocrine Cells during Salt Loading. ENeuro, 2019, 6, ENEURO.0112-19.2019.	1.9	7
83	Nongenomic Glucocorticoid Suppression of a Postsynaptic Potassium Current via Emergent Autocrine Endocannabinoid Signaling in Hypothalamic Neuroendocrine Cells following Chronic Dehydration. ENeuro, 2017, 4, ENEURO.0216-17.2017.	1.9	7
84	The Cell Biology of Oxytocin and Vasopressin Cells. , 2017, , 305-336.		6
85	Lactation induces increased <scp>IPSC</scp> bursting in oxytocinergic neurons. Physiological Reports, 2019, 7, e14047.	1.7	6
86	Coregulation of Ion Channels by Neurosteroids and Phosphorylation. Science Signaling, 2000, 2000, pe1-pe1.	3.6	5
87	Kernel duration and modulation gain in a coupled oscillator model and their implications on the progression of seizures. Network: Computation in Neural Systems, 2012, 23, 59-75.	3.6	3
88	Increased tonic activation of presynaptic metabotropic glutamate receptors in the rat supraoptic nucleus following chronic dehydration. Journal of Physiology, 2003, 551, 815-823.	2.9	3
89	Cell Biology of Oxytocin and Vasopressin Cells. , 2002, , 811-842.		2
90	Regulation of GABA Receptor Activity by Neurosteroids and Phosphorylation. Science Signaling, 2004, 2004, tr4-tr4.	3.6	2

#	Article	IF	CITATION
91	Firing pattern regulation in hypothalamic vasopressin neurons: roles of synaptic inputs and retrograde signaling. BMC Neuroscience, 2010, 11, .	1.9	0
92	Retrograde Signaling Via Dendritic Activation of Glial-Neuronal Circuits. Masterclass in Neuroendocrinology, 2021, , 183-203.	0.1	0
93	Nociceptin/Orphanin FQ (N/OFQ) stimulated diuresis is mediated via inhibition of vasopressin secretion: a role for the hypothalamic paraventricular nucleus (PVN). FASEB Journal, 2009, 23, 967.11.	0.5	0
94	M2 muscarinic receptor mediates arginine-vasopressin synthesis possibly through decreasing presynaptic GABA release in the supraoptic nuclei. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO1-1-126.	0.0	0
95	SUN-472 Labile Ca-Permeable AMPA Receptors Comprise New Synapses Following Salt Loading-Induced Plasticity in Hypothalamic Magnocellular Neurons. Journal of the Endocrine Society, 2019, 3, .	0.2	0
96	SAT-361 Rapid Glucocorticoid Regulation of Adrenoreceptor Trafficking Desensitizes CRH Neurons to Noradrenergic Activation. Journal of the Endocrine Society, 2019, 3, .	0.2	0
97	SAT-427 Low Chloride Transporter Expression in Vasopressin Neurons. Journal of the Endocrine Society, 2019, 3, .	0.2	0