
Claudia Fracasso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8127292/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Validated HPLC-MS/MS Method for Quantification of Fingolimod and Fingolimod-Phosphate in Human Plasma: Application to Patients with Relapsing–Remitting Multiple Sclerosis. Applied Sciences (Switzerland), 2022, 12, 6102.	2.5	0
2	Endothelial damage in septic shock patients as evidenced by circulating syndecan-1, sphingosine-1-phosphate and soluble VE-cadherin: a substudy of ALBIOS. Critical Care, 2021, 25, 113.	5.8	36
3	Doxycycline Inhibition of a Pseudotyped Virus Transduction Does Not Translate to Inhibition of SARS-CoV-2 Infectivity. Viruses, 2021, 13, 1745.	3.3	2
4	Brain Kynurenine Pathway and Functional Outcome of Rats Resuscitated From Cardiac Arrest. Journal of the American Heart Association, 2021, 10, e021071.	3.7	2
5	Biophysical and in Vivo Studies Identify a New Natural-Based Polyphenol, Counteracting Aβ Oligomerization in Vitro and Aβ Oligomer-Mediated Memory Impairment and Neuroinflammation in an Acute Mouse Model of Alzheimer's Disease. ACS Chemical Neuroscience, 2019, 10, 4462-4475.	3.5	23
6	Plasma and Brain Concentrations of Doxycycline after Single and Repeated Doses in Wild-Type and APP23 Mice. Journal of Pharmacology and Experimental Therapeutics, 2019, 368, 32-40.	2.5	46
7	Brain Uptake of Tetrahydrohyperforin and Potential Metabolites after Repeated Dosing in Mice. Journal of Natural Products, 2015, 78, 2029-2035.	3.0	3
8	Early Activation of the Kynurenine Pathway Predicts Early Death and Longâ€ŧerm Outcome in Patients Resuscitated From Outâ€ofâ€Hospital Cardiac Arrest. Journal of the American Heart Association, 2014, 3, .	3.7	34
9	Functionalization with TAT-Peptide Enhances Blood-Brain Barrier Crossing In vitro of Nanoliposomes Carrying a Curcumin-Derivative to Bind Amyloid-Î' Peptide. Journal of Nanomedicine & Nanotechnology, 2013, 04, .	1.1	31
10	Pyrroloquinoxaline hydrazones as fluorescent probes for amyloid fibrils. Organic and Biomolecular Chemistry, 2011, 9, 5137.	2.8	44
11	Acid-catalysed Hydrolysis and Benzodiazepine-like Properties of 5-(Dialkylamino)- and 5-(Alkylthio)-substituted 8-Chloro-6-phenyl-6H-[1,2,4]triazolo[4,3-a][l,5]benzodiazepines in Mice. Journal of Pharmacy and Pharmacology, 2011, 50, 723-728.	2.4	3
12	Interaction of the Anticonvulsants, Denzimol and Nafimidone, with Liver Cytochrome P450 in the Rat. Journal of Pharmacy and Pharmacology, 2011, 40, 17-21.	2.4	6
13	Anorectic Activity of Fluoxetine and Norfluoxetine in Rats: Relationship Between Brain Concentrations and In-vitro Potencies on Monoaminergic Mechanisms. Journal of Pharmacy and Pharmacology, 2011, 44, 250-254.	2.4	35
14	Anorectic activity of fluoxetine and norfluoxetine in mice, rats and guinea-pigs. Journal of Pharmacy and Pharmacology, 2011, 44, 696-698.	2.4	36
15	Design, Synthesis, Radiolabeling, and in Vivo Evaluation of Carbon-11 LabeledN-[2-[4-(3-Cyanopyridin-2-yl)piperazin-1-yl]ethyl]-3-methoxybenzamide, a Potential Positron Emission Tomography Tracer for the Dopamine D4Receptors. Journal of Medicinal Chemistry, 2010, 53, 7344-7355.	6.4	12
16	LP-211 is a brain penetrant selective agonist for the serotonin 5-HT7 receptor. Neuroscience Letters, 2010, 481, 12-16.	2.1	73
17	The SIRT1 activator resveratrol protects SKâ€Nâ€BE cells from oxidative stress and against toxicity caused by αâ€synuclein or amyloidâ€Î² (1â€42) peptide. Journal of Neurochemistry, 2009, 110, 1445-1456.	3.9	241
18	Novel, Potent, and Selective Quinoxaline-Based 5-HT ₃ Receptor Ligands. 1. Further Structureâ^'Activity Relationships and Pharmacological Characterization. Journal of Medicinal Chemistry, 2009, 52, 6946-6950.	6.4	35

CLAUDIA FRACASSO

#	Article	IF	CITATIONS
19	Specific Targeting of Peripheral Serotonin 5-HT ₃ Receptors. Synthesis, Biological Investigation, and Structureâ°'Activity Relationships. Journal of Medicinal Chemistry, 2009, 52, 3548-3562.	6.4	38
20	Enhancement of cortical extracellular 5-HT by 5-HT1A and 5-HT2C receptor blockade restores the antidepressant-like effect of citalopram in non-responder mice. International Journal of Neuropsychopharmacology, 2009, 12, 793.	2.1	11
21	Strain differences in paroxetine-induced reduction of immobility time in the forced swimming test in mice: Role of serotonin. European Journal of Pharmacology, 2008, 594, 117-124.	3.5	44
22	Structural Modifications of <i>N</i> -(1,2,3,4-Tetrahydronaphthalen-1-yl)-4-Aryl-1-piperazinehexanamides: Influence on Lipophilicity and 5-HT ₇ Receptor Activity. Part III. Journal of Medicinal Chemistry, 2008, 51, 5813-5822.	6.4	67
23	Brain-to-Plasma Distribution Ratio of the Biflavone Amentoflavone in the Mouse. Drug Metabolism Letters, 2008, 2, 90-94.	0.8	11
24	Optimized Synthesis of AMPA Receptor Antagonist ZKâ€187638 and Neurobehavioral Activity in a Mouse Model of Neuronal Ceroid Lipofuscinosis. ChemMedChem, 2006, 1, 1142-1148.	3.2	22
25	Glutamate AMPA receptors change in motor neurons of SOD1G93A transgenic mice and their inhibition by a noncompetitive antagonist ameliorates the progression of amytrophic lateral sclerosis-like disease. Journal of Neuroscience Research, 2006, 83, 134-146.	2.9	104
26	High-performance liquid chromatography measurement of hyperforin and its reduced derivatives in rodent plasma. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2005, 816, 21-27.	2.3	8
27	Genotype-Dependent Activity of Tryptophan Hydroxylase-2 Determines the Response to Citalopram in a Mouse Model of Depression. Journal of Neuroscience, 2005, 25, 8165-8172.	3.6	131
28	Effects of chronic treatment with escitalopram or citalopram on extracellular 5-HT in the prefrontal cortex of rats: role of 5-HT1A receptors. British Journal of Pharmacology, 2004, 142, 469-478.	5.4	93
29	5-HT2A and 5-HT2C/2B Receptor Subtypes Modulate Dopamine Release Induced in Vivo by Amphetamine and Morphine in Both the Rat Nucleus Accumbens and Striatum. Neuropsychopharmacology, 2002, 26, 311-324.	5.4	189
30	Chronic treatment with reboxetine by osmotic pumps facilitates its effect on extracellular noradrenaline and may desensitize α2 -adrenoceptors in the prefrontal cortex. British Journal of Pharmacology, 2001, 132, 183-188.	5.4	56
31	Non-Nucleoside HIV-1 Reverse Transcriptase Inhibitors: Synthesis and Biological Evaluation of Novel Quinoxalinylethylpyridylthioureas as Potent Antiviral Agents. Antiviral Chemistry and Chemotherapy, 2000, 11, 141-155.	0.6	10
32	Orally Administered Ranitidine Plasma Concentrations before and after Biliopancreatic Diversion in Morbidly Obese Patients. Obesity Surgery, 1999, 9, 36-39.	2.1	10
33	Pyrroloquinoxaline Derivatives as High-Affinity and Selective 5-HT3Receptor Agonists:Â Synthesis, Further Structureâ~Activity Relationships, and Biological Studies. Journal of Medicinal Chemistry, 1999, 42, 4362-4379.	6.4	103
34	A HIGH-PERFORMANCE LIQUID CHROMATOGRAPHIC ASSAY FOR 5-METHOXY-3-[N-(4-(4-FLUORO-PHENYL)-4-OXOBUTYL)-1,2,5,6-TETRAHYDROPYRIDIN-3-YL-METHYL]-1H-INDOLE (BIMG 80), A POTENTIAL ANTIPSYCHOTIC AGENT, AND ITS APPLICATION IN BRAIN-TO-PLASMA DISTRIBUTION STUDIES IN THE RAT. Journal of Liquid Chromatography and Related Technologies, 1999, 22, 1785-1795.	1.0	0
35	Citalopram-induced hypophagia is enhanced by blockade of 5-HT1A receptors: role of 5-HT2C receptors. British Journal of Pharmacology, 1998, 124, 1781-1787.	5.4	43
36	Brain-to-blood partition and in vivo inhibition of 5-hydroxytryptamine reuptake and quipazine-mediated behaviour of nefazodone and its main active metabolites in rodents. British Journal of Pharmacology, 1998, 125, 1617-1623.	5.4	10

CLAUDIA FRACASSO

#	Article	IF	CITATIONS
37	Novel and Highly Potent 5-HT3 Receptor Agonists Based on a Pyrroloquinoxaline Structure. Journal of Medicinal Chemistry, 1997, 40, 3670-3678.	6.4	69
38	The effect of the spin trapping agent α-phenyl-n-tert-butyl nitrone on dexfenfluramine-induced serotonin depletion in rat brain. Environmental Toxicology and Pharmacology, 1997, 3, 289-295.	4.0	2
39	Neuropharmacological Effects of Low and High Doses of Repeated Oral Dexfenfluramine in Rats: A Comparison with Fluoxetine. Pharmacology Biochemistry and Behavior, 1997, 57, 851-856.	2.9	13
40	Effects of chronic treatment with fluoxetine and citalopram on 5-HT uptake, 5-HT1B autoreceptors, 5-HT3 and 5-HT4 receptors in rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 1997, 356, 22-28.	3.0	63
41	In vitro and in vivo effects of the anorectic agent dexfenfluramine on the central serotoninergic neuronal systems of non-human primates. A comparison with the rat. Naunyn-Schmiedeberg's Archives of Pharmacology, 1996, 353, 641-647.	3.0	19
42	Oral kinetics of dexfenfluramine and dexnorfenfluramine in non-human primates. Xenobiotica, 1995, 25, 1143-1150.	1.1	15
43	Effect ofd-fenfluramine on the indole contents of the rat brain after treatment with different inducers of cytochrome P450 isoenzymes. Psychopharmacology, 1995, 118, 188-194.	3.1	3
44	Depletion and time-course of recovery of brain serotonin after repeated subcutaneous dexfenfluramine in the mouse. A comparison with the rat. Neuropharmacology, 1995, 34, 1653-1659.	4.1	19
45	Anorectic effect and brain concentrations of D-fenfluramine in the marmoset: relationship to the in vivo and in vitro effects on serotonergic mechanisms. Naunyn-Schmiedeberg's Archives of Pharmacology, 1993, 347, 306-312.	3.0	17
46	The role of d-norfenfluramine in the indole-depleting effect of d-fenfluramine in the rat. European Journal of Pharmacology, 1993, 233, 71-77.	3.5	33
47	Reciprocal interaction of 5â€hydroxytryptamine and cholecystokinin in the control of feeding patterns in rats. British Journal of Pharmacology, 1993, 109, 491-494.	5.4	29
48	The effects of single and repeated anorectic doses of 5â€hydroxytryptamine uptake inhibitors on indole levels in rat brain. British Journal of Pharmacology, 1993, 110, 355-359.	5.4	45
49	Single- and multiple-dose kinetics of <i>d</i> -fenfluramine in rats given anorectic and toxic doses. Xenobiotica, 1992, 22, 217-226.	1.1	26
50	Effects of short- and long-term administration of fluoxetine on the monoamine content of rat brain. Neuropharmacology, 1992, 31, 343-347.	4.1	78
51	Effects of intracerebroventricular administration of d-fenfluramine and d-norfenfluramine, as a single injection or 2-HR infusion, on serotonin in brain: Relationship to concentrations of drugs in brain. Neuropharmacology, 1991, 30, 119-123.	4.1	16
52	Comparative studies on the anorectic activity of d-fenfluramine in mice, rats, and guinea pigs. Naunyn-Schmiedeberg's Archives of Pharmacology, 1991, 343, 483-90.	3.0	71
53	Single and multiple dose pharmacokinetics of etizolam in healthy subjects. European Journal of Clinical Pharmacology, 1991, 40, 181-185.	1.9	48
54	Influence of dose and route of administration on the kinetics of fluoxetine and its metabolite norfluoxetine in the rat. Psychopharmacology, 1990, 100, 509-514.	3.1	180

#	Article	IF	CITATIONS
55	Effect of L-cysteine on the long-term depletion of brain indoles caused by p-chloroamphetamine and d-fenfluramine in rats Relation to brain drug concentrations. European Journal of Pharmacology, 1989, 163, 77-83.	3.5	25
56	Disposition of d-fenfluramine in lean and obese rats. Appetite, 1988, 10, 45-55.	3.7	13
57	Disposition of (—)-fenfluramine and its active metabolite, (—)-norfenfluramine in rat: A single dose-proportionality study. Xenobiotica, 1988, 18, 573-584.	1.1	16
58	Determination of ranitidine in rat plasma and brain by high-performance liquid chromatography. Biomedical Applications, 1987, 413, 363-369.	1.7	7