
Kristian Helin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8126782/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Targeting RIOK2 ATPase activity leads to decreased protein synthesis and cell death in acute myeloid leukemia. Blood, 2022, 139, 245-255.	0.6	13
2	SATB2 preserves colon stem cell identity and mediates ileum-colon conversion via enhancer remodeling. Cell Stem Cell, 2022, 29, 101-115.e10.	5.2	31
3	PROSER1 mediates TET2 O-GlcNAcylation to regulate DNA demethylation on UTX-dependent enhancers and CpG islands. Life Science Alliance, 2022, 5, e202101228.	1.3	24
4	Comprehensive and unbiased multiparameter high-throughput screening by compaRe finds effective and subtle drug responses in AML models. ELife, 2022, 11, .	2.8	2
5	Chromatin modifier HUSH co-operates with RNA decay factor NEXT to restrict transposable element expression. Molecular Cell, 2022, 82, 1691-1707.e8.	4.5	43
6	CpG island reconfiguration for the establishment and synchronization of polycomb functions upon exit from naive pluripotency. Molecular Cell, 2022, 82, 1169-1185.e7.	4.5	10
7	BMP2/SMAD pathway activation in JAK2/p53-mutant megakaryocyte/erythroid progenitors promotes leukemic transformation. Blood, 2022, 139, 3630-3646.	0.6	9
8	Histone editing elucidates the functional roles of H3K27 methylation and acetylation in mammals. Nature Genetics, 2022, 54, 754-760.	9.4	59
9	ChIP-Sequencing of. Methods in Molecular Biology, 2021, 2272, 251-262.	0.4	1
10	Complex-dependent histone acetyltransferase activity of KAT8 determines its role in transcription and cellular homeostasis. Molecular Cell, 2021, 81, 1749-1765.e8.	4.5	42
11	MPP8 is essential for sustaining self-renewal of ground-state pluripotent stem cells. Nature Communications, 2021, 12, 3034.	5.8	35
12	Generation of locus-specific degradable tag knock-ins in mouse and human cell lines. STAR Protocols, 2021, 2, 100575.	0.5	4
13	TET2 mutations are associated with hypermethylation at key regulatory enhancers in normal and malignant hematopoiesis. Nature Communications, 2021, 12, 6061.	5.8	47
14	The SETDB1–TRIM28 Complex Suppresses Antitumor Immunity. Cancer Immunology Research, 2021, 9, 1413-1424.	1.6	24
15	Identification of recurrent FHL2-GLI2 oncogenic fusion in sclerosing stromal tumors of the ovary. Nature Communications, 2020, 11, 44.	5.8	34
16	PRMT5 Inhibition Modulates E2F1 Methylation and Gene-Regulatory Networks Leading to Therapeutic Efficacy in JAK2V617F-Mutant MPN. Cancer Discovery, 2020, 10, 1742-1757.	7.7	55
17	PR-DUB maintains the expression of critical genes through FOXK1/2- and ASXL1/2/3-dependent recruitment to chromatin and H2AK119ub1 deubiquitination. Genome Research, 2020, 30, 1119-1130.	2.4	36
18	KDM4A regulates the maternal-to-zygotic transition by protecting broad H3K4me3 domains from H3K9me3 invasion in oocytes. Nature Cell Biology, 2020, 22, 380-388.	4.6	77

#	Article	IF	CITATIONS
19	Mutant FOXL2C134W Hijacks SMAD4 and SMAD2/3 to Drive Adult Granulosa Cell Tumors. Cancer Research, 2020, 80, 3466-3479.	0.4	29
20	The histone demethylase Jarid1b mediates angiotensin Ilâ€induced endothelial dysfunction by controlling the 3′UTR of soluble epoxide hydrolase. Acta Physiologica, 2019, 225, e13168.	1.8	8
21	The Lysine Demethylase KDM5B Regulates Islet Function and Glucose Homeostasis. Journal of Diabetes Research, 2019, 2019, 1-15.	1.0	15
22	PRMT5 methylome profiling uncovers a direct link to splicing regulation in acute myeloid leukemia. Nature Structural and Molecular Biology, 2019, 26, 999-1012.	3.6	105
23	A Functional Link between Nuclear RNA Decay and Transcriptional Control Mediated by the Polycomb Repressive Complex 2. Cell Reports, 2019, 29, 1800-1811.e6.	2.9	32
24	The KDM4/JMJD2 histone demethylases are required for hematopoietic stem cell maintenance. Blood, 2019, 134, 1154-1158.	0.6	40
25	Non-core Subunits of the PRC2 Complex Are Collectively Required for Its Target-Site Specificity. Molecular Cell, 2019, 76, 423-436.e3.	4.5	108
26	Molecular Mechanisms Directing PRC2 Recruitment and H3K27 Methylation. Molecular Cell, 2019, 74, 8-18.	4.5	393
27	TET2 binding to enhancers facilitates transcription factor recruitment in hematopoietic cells. Genome Research, 2019, 29, 564-575.	2.4	66
28	PLZF targets developmental enhancers for activation during osteogenic differentiation of human mesenchymal stem cells. ELife, 2019, 8, .	2.8	32
29	Quantification of Differential Transcription Factor Activity and Multiomics-Based Classification into Activators and Repressors: diffTF. Cell Reports, 2019, 29, 3147-3159.e12.	2.9	84
30	Accurate H3K27 methylation can be established de novo by SUZ12-directed PRC2. Nature Structural and Molecular Biology, 2018, 25, 225-232.	3.6	162
31	Epigenetic control of IL-23 expression in keratinocytes is important for chronic skin inflammation. Nature Communications, 2018, 9, 1420.	5.8	88
32	Aggressiveness of non-EMT breast cancer cells relies on FBXO11 activity. Molecular Cancer, 2018, 17, 171.	7.9	20
33	The Role of Chromatin-Associated Proteins in Cancer. Annual Review of Cancer Biology, 2017, 1, 355-377.	2.3	10
34	EZH2 is a potential therapeutic target for H3K27M-mutant pediatric gliomas. Nature Medicine, 2017, 23, 483-492.	15.2	392
35	Maternal expression of the JMJD2A/KDM4A histone demethylase is critical for pre-implantation development. Development (Cambridge), 2017, 144, 3264-3277.	1.2	23
36	Oncohistones: drivers of pediatric cancers. Genes and Development, 2017, 31, 2313-2324.	2.7	85

#	Article	IF	CITATIONS
37	Continual removal of H3K9 promoter methylation by Jmjd2 demethylases is vital for <scp>ESC</scp> selfâ€renewal and early development. EMBO Journal, 2016, 35, 1550-1564.	3.5	84
38	Jarid2 binds mono-ubiquitylated H2A lysine 119 to mediate crosstalk between Polycomb complexes PRC1 and PRC2. Nature Communications, 2016, 7, 13661.	5.8	207
39	Role of TET enzymes in DNA methylation, development, and cancer. Genes and Development, 2016, 30, 733-750.	2.7	781
40	Regional tumour glutamine supply affects chromatin and cell identity. Nature Cell Biology, 2016, 18, 1027-1029.	4.6	4
41	Maintaining cell identity: PRC2-mediated regulation of transcription and cancer. Nature Reviews Cancer, 2016, 16, 803-810.	12.8	368
42	Role of the Polycomb Repressive Complex 2 (PRC2) in Transcriptional Regulation and Cancer. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a026575.	2.9	151
43	ZFP57 maintains the parent-of-origin-specific expression of the imprinted genes and differentially affects non-imprinted targets in mouse embryonic stem cells. Nucleic Acids Research, 2016, 44, 8165-8178.	6.5	73
44	Jmjd2/Kdm4 demethylases are required for expression of <i>Il3ra</i> and survival of acute myeloid leukemia cells. Genes and Development, 2016, 30, 1278-1288.	2.7	69
45	Systems Level Analysis of Histone H3 Post-translational Modifications (PTMs) Reveals Features of PTM Crosstalk in Chromatin Regulation. Molecular and Cellular Proteomics, 2016, 15, 2715-2729.	2.5	76
46	Optimizing sgRNA position markedly improves the efficiency of CRISPR/dCas9-mediated transcriptional repression. Nucleic Acids Research, 2016, 44, e141-e141.	6.5	118
47	DNMT3AR882H mutant and Tet2 inactivation cooperate in the deregulation of DNA methylation control to induce lymphoid malignancies in mice. Leukemia, 2016, 30, 1388-1398.	3.3	67
48	The histone demethylase Jarid1b is required for hematopoietic stem cell self-renewal in mice. Blood, 2015, 125, 2075-2078.	0.6	40
49	SWI/SNF Subunits SMARCA4, SMARCD2 and DPF2 Collaborate in MLL-Rearranged Leukaemia Maintenance. PLoS ONE, 2015, 10, e0142806.	1.1	19
50	TET1: an epigenetic guardian of lymphomagenesis. Nature Immunology, 2015, 16, 592-594.	7.0	4
51	Epigenetic Regulation of Angiogenesis by JARID1B-Induced Repression of HOXA5. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1645-1652.	1.1	33
52	The lncRNA MIR31HG regulates p16INK4A expression to modulate senescence. Nature Communications, 2015, 6, 6967.	5.8	161
53	Loss of <i>TET2</i> in hematopoietic cells leads to DNA hypermethylation of active enhancers and induction of leukemogenesis. Genes and Development, 2015, 29, 910-922.	2.7	213
54	Tumor suppressor ASXL1 is essential for the activation of INK4B expression in response to oncogene activity and anti-proliferative signals. Cell Research, 2015, 25, 1205-1218.	5.7	41

#	Article	IF	CITATIONS
55	RSV-Induced H3K4 Demethylase KDM5B Leads to Regulation of Dendritic Cell-Derived Innate Cytokines and Exacerbates Pathogenesis In Vivo. PLoS Pathogens, 2015, 11, e1004978.	2.1	63
56	Jarid2 Is Implicated in the Initial Xist-Induced Targeting of PRC2 to the Inactive X Chromosome. Molecular Cell, 2014, 53, 301-316.	4.5	221
57	The Demethylase JMJD2C Localizes to H3K4me3-Positive Transcription Start Sites and Is Dispensable for Embryonic Development. Molecular and Cellular Biology, 2014, 34, 1031-1045.	1.1	62
58	Middleâ€down hybrid chromatography/tandem mass spectrometry workflow for characterization of combinatorial postâ€translational modifications in histones. Proteomics, 2014, 14, 2200-2211.	1.3	76
59	Gene Silencing Triggers Polycomb Repressive Complex 2 Recruitment to CpG Islands Genome Wide. Molecular Cell, 2014, 55, 347-360.	4.5	358
60	Chromatin Repressive Complexes in Stem Cells, Development, and Cancer. Cell Stem Cell, 2014, 14, 735-751.	5.2	301
61	shRNA screening identifies JMJD1C as being required for leukemia maintenance. Blood, 2014, 123, 1870-1882.	0.6	73
62	A Screen Identifies the Oncogenic Micro-RNA miR-378a-5p as a Negative Regulator of Oncogene-Induced Senescence. PLoS ONE, 2014, 9, e91034.	1.1	17
63	The Histone Lysine Demethylase JMJD3/KDM6B Is Recruited to p53 Bound Promoters and Enhancer Elements in a p53 Dependent Manner. PLoS ONE, 2014, 9, e96545.	1.1	67
64	Transcriptional regulation by Polycomb group proteins. Nature Structural and Molecular Biology, 2013, 20, 1147-1155.	3.6	757
65	Chromatin proteins and modifications as drug targets. Nature, 2013, 502, 480-488.	13.7	389
66	Histone lysine demethylases as targets for anticancer therapy. Nature Reviews Drug Discovery, 2013, 12, 917-930.	21.5	413
67	Reduced H3K27me3 and DNA Hypomethylation Are Major Drivers of Gene Expression in K27M Mutant Pediatric High-Grade Gliomas. Cancer Cell, 2013, 24, 660-672.	7.7	633
68	Tet Proteins Connect the O-Linked N-acetylglucosamine Transferase Ogt to Chromatin in Embryonic Stem Cells. Molecular Cell, 2013, 49, 645-656.	4.5	285
69	Polycomb Cbx family members mediate the balance between haematopoietic stem cell self-renewal andÂdifferentiation. Nature Cell Biology, 2013, 15, 353-362.	4.6	211
70	Fbxl10/Kdm2b Recruits Polycomb Repressive Complex 1 to CpG Islands and Regulates H2A Ubiquitylation. Molecular Cell, 2013, 49, 1134-1146.	4.5	351
71	The Histone Demethylase Jarid1b Ensures Faithful Mouse Development by Protecting Developmental Genes from Aberrant H3K4me3. PLoS Genetics, 2013, 9, e1003461.	1.5	114
72	Genome-wide profiling identifies a DNA methylation signature that associates with TET2 mutations in diffuse large B-cell lymphoma. Haematologica, 2013, 98, 1912-1920.	1.7	116

Kristian Helin

#	Article	IF	CITATIONS
73	Utx Is Required for Proper Induction of Ectoderm and Mesoderm during Differentiation of Embryonic Stem Cells. PLoS ONE, 2013, 8, e60020.	1.1	81
74	DNA methylation: TET proteins—guardians of CpG islands?. EMBO Reports, 2012, 13, 28-35.	2.0	269
75	Molecular mechanisms and potential functions of histone demethylases. Nature Reviews Molecular Cell Biology, 2012, 13, 297-311.	16.1	708
76	TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature, 2011, 473, 343-348.	13.7	905
77	Jarid1b targets genes regulating development and is involved in neural differentiation. EMBO Journal, 2011, 30, 4586-4600.	3.5	183
78	Histone demethylases in development and disease. Trends in Cell Biology, 2010, 20, 662-671.	3.6	329
79	JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells. Nature, 2010, 464, 306-310.	13.7	499
80	Polycomb complexes act redundantly to repress genomic repeats and genes. Genes and Development, 2010, 24, 265-276.	2.7	298
81	Characterization of an antagonistic switch between histone H3 lysine 27 methylation and acetylation in the transcriptional regulation of Polycomb group target genes. Nucleic Acids Research, 2010, 38, 4958-4969.	6.5	317
82	Quantitative Mass Spectrometry of Histones H3.2 and H3.3 in Suz12-deficient Mouse Embryonic Stem Cells Reveals Distinct, Dynamic Post-translational Modifications at Lys-27 and Lys-36. Molecular and Cellular Proteomics, 2010, 9, 838-850.	2.5	121
83	NEK11â^'Linking CHK1 and CDC25A in DNA damage checkpoint signaling. Cell Cycle, 2010, 9, 450-455.	1.3	29
84	A Functional Link between the Histone Demethylase PHF8 and the Transcription Factor ZNF711 in X-Linked Mental Retardation. Molecular Cell, 2010, 38, 165-178.	4.5	186
85	Histone methyltransferases in cancer. Seminars in Cell and Developmental Biology, 2010, 21, 209-220.	2.3	262
86	The H3K27me3 demethylase JMJD3 contributes to the activation of the <i>INK4A–ARF</i> locus in response to oncogene- and stress-induced senescence. Genes and Development, 2009, 23, 1171-1176.	2.7	384
87	Human CDT1 Associates with CDC7 and Recruits CDC45 to Chromatin during S Phase. Journal of Biological Chemistry, 2009, 284, 3028-3036.	1.6	17
88	ATAD2 Is a Novel Cofactor for MYC, Overexpressed and Amplified in Aggressive Tumors. Cancer Research, 2009, 69, 8491-8498.	0.4	201
89	Isolation and characterization of DUSP11, a novel p53 target gene. Journal of Cellular and Molecular Medicine, 2009, 13, 2158-2170.	1.6	15
90	NEK11 regulates CDC25A degradation and the IR-induced G2/M checkpoint. Nature Cell Biology, 2009, 11, 1247-1253.	4.6	122

#	Article	IF	CITATIONS
91	Polycomb group proteins: navigators of lineage pathways led astray in cancer. Nature Reviews Cancer, 2009, 9, 773-784.	12.8	537
92	A model for transmission of the H3K27me3 epigenetic mark. Nature Cell Biology, 2008, 10, 1291-1300.	4.6	656
93	The emerging functions of histone demethylases. Current Opinion in Genetics and Development, 2008, 18, 159-168.	1.5	201
94	Polycomb Complex 2 Is Required for <i>E-cadherin</i> Repression by the Snail1 Transcription Factor. Molecular and Cellular Biology, 2008, 28, 4772-4781.	1.1	390
95	The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes and Development, 2007, 21, 525-530.	2.7	775
96	The Polycomb Group Protein Suz12 Is Required for Embryonic Stem Cell Differentiation. Molecular and Cellular Biology, 2007, 27, 3769-3779.	1.1	628
97	RBP2 Belongs to a Family of Demethylases, Specific for Tri-and Dimethylated Lysine 4 on Histone 3. Cell, 2007, 128, 1063-1076.	13.5	485
98	Bypass of senescence by the polycomb group protein CBX8 through direct binding to the INK4A-ARF locus. EMBO Journal, 2007, 26, 1637-1648.	3.5	175
99	UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature, 2007, 449, 731-734.	13.7	1,183
100	Role of the Polycomb Repressive Complex 2 in Acute Promyelocytic Leukemia. Cancer Cell, 2007, 11, 513-525.	7.7	228
101	Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes and Development, 2006, 20, 1123-1136.	2.7	1,098
102	The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3. Nature, 2006, 442, 307-311.	13.7	670
103	E2F1 is crucial for E2Fâ€dependent apoptosis. EMBO Reports, 2005, 6, 661-668.	2.0	106
104	Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO Journal, 2004, 23, 4061-4071.	3.5	778
105	E2F target genes: unraveling the biology. Trends in Biochemical Sciences, 2004, 29, 409-417.	3.7	497
106	EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO Journal, 2003, 22, 5323-5335.	3.5	1,052
107	E2F1-mediated transcriptional inhibition of the plasminogen activator inhibitor type 1 gene. FEBS Journal, 2001, 268, 4969-4978.	0.2	20
108	Apaf-1 is a transcriptional target for E2F and p53. Nature Cell Biology, 2001, 3, 552-558.	4.6	552

#	Article	IF	CITATIONS
109	APAF1 is a key transcriptional target for p53 in the regulation of neuronal cell death. Journal of Cell Biology, 2001, 155, 207-216.	2.3	184
110	The p53 Tumour Suppressor Protein. Biotechnology and Genetic Engineering Reviews, 2000, 17, 179-212.	2.4	10
111	E2F activates late-G1 events but cannot replace E1A in inducing S phase in terminally differentiated skeletal muscle cells. Oncogene, 1999, 18, 5054-5062.	2.6	21
112	Regulation of cell proliferation by the E2F transcription factors. Biochemical Society Transactions, 1999, 27, A64-A64.	1.6	0
113	E2F-1-Induced p53-independent apoptosis in transgenic mice. Oncogene, 1998, 17, 143-155.	2.6	119
114	E2F-6: a novel member of the E2F family is an inhibitor of E2F-dependent transcription. Oncogene, 1998, 17, 611-623.	2.6	183
115	Loss of the retinoblastoma protein-related p130 protein in small cell lung carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 6933-6938.	3.3	113