Patricia J Gearhart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8126710/publications.pdf

Version: 2024-02-01

		172457	161849
56	3,722	29	54
papers	citations	h-index	g-index
56	56	56	3819
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Promoter Proximity Defines Mutation Window for VH and VΚ Genes Rearranged to Different J Genes. Journal of Immunology, 2022, 208, 2220-2226.	0.8	4
2	Transcriptome and IgH Repertoire Analyses Show That CD11chi B Cells Are a Distinct Population With Similarity to B Cells Arising in Autoimmunity and Infection. Frontiers in Immunology, 2021, 12, 649458.	4.8	20
3	Small Molecule Inhibitors of Activation-Induced Deaminase Decrease Class Switch Recombination in B Cells. ACS Pharmacology and Translational Science, 2021, 4, 1214-1226.	4.9	5
4	Auto-Antibody Production During Experimental Atherosclerosis in ApoE-/- Mice. Frontiers in Immunology, 2021, 12, 695220.	4.8	14
5	What Targets Somatic Hypermutation to the Immunoglobulin Loci?. Viral Immunology, 2020, 33, 277-281.	1.3	6
6	Commentary for the Special Issue on â€~Aging and Sex in Immunity'. Cellular Immunology, 2020, 348, 104037.	3.0	1
7	DNA Breaks in Ig V Regions Are Predominantly Single Stranded and Are Generated by UNG and MSH6 DNA Repair Pathways. Journal of Immunology, 2019, 202, 1573-1581.	0.8	4
8	B cells from young and old mice switch isotypes with equal frequencies after ex vivo stimulation. Cellular Immunology, 2019, 345, 103966.	3.0	10
9	Complex sex-biased antibody responses: estrogen receptors bind estrogen response elements centered within immunoglobulin heavy chain gene enhancers. International Immunology, 2019, 31, 141-156.	4.0	35
10	J H 6 downstream intronic sequence is dispensable for RNA polymerase II accumulation and somatic hypermutation of the variable gene in Ramos cells. Molecular Immunology, 2018, 97, 101-108.	2.2	4
11	The Reign of Antibodies: A Celebration of and Tribute to Michael Potter and His Homogeneous Immunoglobulin Workshops. Journal of Immunology, 2018, 200, 23-26.	0.8	5
12	Naive B Cells with High-Avidity Germline-Encoded Antigen Receptors Produce Persistent IgM+ and Transient IgG+ Memory B Cells. Immunity, 2018, 48, 1135-1143.e4.	14.3	61
13	R-Loop Depletion by Over-expressed RNase H1 in Mouse B Cells Increases Activation-Induced Deaminase Access to the Transcribed Strand without Altering Frequency of Isotype Switching. Journal of Molecular Biology, 2017, 429, 3255-3263.	4.2	18
14	Age-Associated B Cells Express a Diverse Repertoire of VH and Vκ Genes with Somatic Hypermutation. Journal of Immunology, 2017, 198, 1921-1927.	0.8	99
15	Signals that drive T-bet expression in B cells. Cellular Immunology, 2017, 321, 3-7.	3.0	39
16	Co-Stimulation of BCR and Toll-Like Receptor 7 Increases Somatic Hypermutation, Memory B Cell Formation, and Secondary Antibody Response to Protein Antigen. Frontiers in Immunology, 2017, 8, 1833.	4.8	27
17	Binding of estrogen receptors to switch sites and regulatory elements in the immunoglobulin heavy chain locus of activated B cells suggests a direct influence of estrogen on antibody expression. Molecular Immunology, 2016, 77, 97-102.	2.2	42
18	DNA polymerase \hat{l}^1 functions in the generation of tandem mutations during somatic hypermutation of antibody genes. Journal of Experimental Medicine, 2016, 213, 1675-1683.	8.5	27

#	Article	IF	Citations
19	F10 cytotoxicity via topoisomerase I cleavage complex repair consistent with a unique mechanism for thymineless death. Future Oncology, 2016, 12, 2183-2188.	2.4	10
20	Antibody diversification caused by disrupted mismatch repair and promiscuous DNA polymerases. DNA Repair, 2016, 38, 110-116.	2.8	53
21	ATM deficiency promotes development of murine B-cell lymphomas that resemble diffuse large B-cell lymphoma in humans. Blood, 2015, 126, 2291-2301.	1.4	13
22	Exceptional Antibodies Produced by Successive Immunizations. PLoS Biology, 2015, 13, e1002321.	5.6	0
23	ATAD5 Deficiency Decreases B Cell Division and <i>Igh</i> Recombination. Journal of Immunology, 2015, 194, 35-42.	0.8	10
24	Defective Repair of Uracil Causes Telomere Defects in Mouse Hematopoietic Cells. Journal of Biological Chemistry, 2015, 290, 5502-5511.	3.4	23
25	Topoisomerase I deficiency causes RNA polymerase II accumulation and increases AID abundance in immunoglobulin variable genes. DNA Repair, 2015, 30, 46-52.	2.8	12
26	Spt5 accumulation at variable genes distinguishes somatic hypermutation in germinal center B cells from ex vivo–activated cells. Journal of Experimental Medicine, 2014, 211, 2297-2306.	8.5	43
27	Refining the Neuberger model: Uracil processing by activated B cells. European Journal of Immunology, 2014, 44, 1913-1916.	2.9	18
28	DNA polymerase \hat{I}_{q} generates tandem mutations in immunoglobulin variable regions. Journal of Experimental Medicine, 2012, 209, 1075-1081.	8.5	42
29	Does DNA repair occur during somatic hypermutation?. Seminars in Immunology, 2012, 24, 287-292.	5.6	42
30	Different B Cell Populations Mediate Early and Late Memory During an Endogenous Immune Response. Science, 2011, 331, 1203-1207.	12.6	475
31	Uracil residues dependent on the deaminase AID in immunoglobulin gene variable and switch regions. Nature Immunology, $2011,12,70$ -76.	14.5	106
32	XRCC1 suppresses somatic hypermutation and promotes alternative nonhomologous end joining in <i>Igh</i> genes. Journal of Experimental Medicine, 2011, 208, 2209-2216.	8.5	51
33	Controlling somatic hypermutation in immunoglobulin variable and switch regions. Immunologic Research, 2010, 47, 113-122.	2.9	31
34	AID and Somatic Hypermutation. Advances in Immunology, 2010, 105, 159-191.	2.2	186
35	Local Sequence Targeting in the AID/APOBEC Family Differentially Impacts Retroviral Restriction and Antibody Diversification. Journal of Biological Chemistry, 2010, 285, 40956-40964.	3.4	71
36	A Portable Hot Spot Recognition Loop Transfers Sequence Preferences from APOBEC Family Members to Activation-induced Cytidine Deaminase. Journal of Biological Chemistry, 2009, 284, 22898-22904.	3.4	121

#	Article	IF	CITATIONS
37	Immunoglobulin switch $\hat{l}^{1}\!\!/\!\!4$ sequence causes RNA polymerase II accumulation and reduces dA hypermutation. Journal of Experimental Medicine, 2009, 206, 1237-1244.	8.5	102
38	Hijacked DNA repair proteins and unchained DNA polymerases. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 605-611.	4.0	27
39	Reevaluation of the role of DNA polymerase $\hat{l}_{_{\! 4}}$ in somatic hypermutation of immunoglobulin genes. DNA Repair, 2008, 7, 1603-1608.	2.8	43
40	Activation-induced deaminase-mediated class switch recombination is blocked by anti-lgM signaling in a phosphatidylinositol 3-kinase-dependent fashion. Molecular Immunology, 2008, 45, 1799-1806.	2.2	16
41	Normal hypermutation in antibody genes from congenic mice defective for DNA polymerase \hat{I}^1 . DNA Repair, 2006, 5, 392-398.	2.8	35
42	Antibody Wars: Extreme Diversity. Journal of Immunology, 2006, 177, 4235-4236.	0.8	4
43	MSH2–MSH6 stimulates DNA polymerase Î∙, suggesting a role for A:T mutations in antibody genes. Journal of Experimental Medicine, 2005, 201, 637-645.	8.5	175
44	Different mutation signatures in DNA polymerase Â- and MSH6-deficient mice suggest separate roles in antibody diversification. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8656-8661.	7.1	115
45	DNA Polymerase η Contributes to Strand Bias of Mutations of A versus T in Immunoglobulin Genes. Journal of Immunology, 2005, 174, 7781-7786.	0.8	74
46	Absence of DNA Polymerase η Reveals Targeting of C Mutations on the Nontranscribed Strand in Immunoglobulin Switch Regions. Journal of Experimental Medicine, 2004, 199, 917-924.	8.5	70
47	Immunoglobulin Class Switch Recombination Is Impaired in Atm-deficient Mice. Journal of Experimental Medicine, 2004, 200, 1111-1121.	8.5	152
48	A Role for Msh6 But Not Msh3 in Somatic Hypermutation and Class Switch Recombination. Journal of Experimental Medicine, 2004, 200, 61-68.	8.5	153
49	129-derived Strains of Mice Are Deficient in DNA Polymerase \hat{l}^1 and Have Normal Immunoglobulin Hypermutation. Journal of Experimental Medicine, 2003, 198, 635-643.	8.5	169
50	Third complementarity-determining region of mutated VH immunoglobulin genes contains shorter V, D, J, P, and N components than non-mutated genes. Immunology, 2001, 103, 179-187.	4.4	71
51	Impact of age on hypermutation of immunoglobulin variable genes in humans. Journal of Clinical Immunology, 2001, 21, 102-115.	3.8	28
52	DNA polymerase $\hat{\mathbf{l}}\cdot$ is an A-T mutator in somatic hypermutation of immunoglobulin variable genes. Nature Immunology, 2001, 2, 537-541.	14.5	408
53	Altered spectra of hypermutation in DNA repair–deficient mice. Philosophical Transactions of the Royal Society B: Biological Sciences, 2001, 356, 5-11.	4.0	8
54	Increased Hypermutation at G and C Nucleotides in Immunoglobulin Variable Genes from Mice Deficient in the MSH2 Mismatch Repair Protein. Journal of Experimental Medicine, 1998, 187, 1745-1751.	8.5	170

#	Article	IF	CITATIONS
55	Insertion of 2 kb of bacteriophage DNA between an immunoglobulin promoter and leader exon stops somatic hypermutation in a lº transgene. Molecular Immunology, 1997, 34, 359-366.	2.2	21
56	Patterns of Somatic Mutations in Immunoglobulin Variable Genes. Genetics, 1987, 115, 169-176.	2.9	153