Yingxia Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8126213/publications.pdf

Version: 2024-02-01

516710 677142 22 934 16 22 citations h-index g-index papers 22 22 22 790 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A green MXene-based organohydrogel with tunable mechanics and freezing tolerance for wearable strain sensors. Chinese Chemical Letters, 2022, 33, 2205-2211.	9.0	21
2	A lightweight MXene-Coated nonwoven fabric with excellent flame Retardancy, EMI Shielding, and Electrothermal/Photothermal conversion for wearable heater. Chemical Engineering Journal, 2022, 430, 132605.	12.7	71
3	Nature Inspired MXene-Decorated 3D Honeycomb-Fabric Architectures Toward Efficient Water Desalination and Salt Harvesting. Nano-Micro Letters, 2022, 14, 10.	27.0	104
4	Synergistic flame retardant weft-knitted alginate/viscose fabrics with MXene coating for multifunctional wearable heaters. Composites Part B: Engineering, 2022, 232, 109618.	12.0	50
5	Progress in the mechanical enhancement of hydrogels: Fabrication strategies and underlying mechanisms. Journal of Polymer Science, 2022, 60, 2525-2542.	3.8	45
6	2D-Planar decorated 3D-network enables strong synergistic mechanics and programmable shape transformations for alginate-based hydrogels. Chemical Engineering Journal, 2021, 405, 126619.	12.7	15
7	A self-reinforcing strategy enables the intimate interface for anisotropic alginate composite hydrogels. Carbohydrate Polymers, 2021, 251, 117054.	10.2	13
8	Selected Phase Separation Renders High Strength and Toughness to Polyacrylamide/Alginate Hydrogels with Large-Scale Cross-Linking Zones. ACS Applied Materials & Enterfaces, 2021, 13, 25383-25391.	8.0	17
9	A Facile Strategy to Fabricate Antistatic Polyamide 1012/Multi-Walled Carbon Nanotube Pipes for Fuel Delivery Applications. Polymers, 2020, 12, 1797.	4.5	3
10	Flexible MXene-Decorated Fabric with Interwoven Conductive Networks for Integrated Joule Heating, Electromagnetic Interference Shielding, and Strain Sensing Performances. ACS Applied Materials & Samp; Interfaces, 2020, 12, 14459-14467.	8.0	228
11	Comparison of Two Different Preparation Methods of Wet-Spun Carrageenan Fibers Directly from <i>Chondrus</i> Extractions. ACS Omega, 2020, 5, 6661-6665.	3.5	3
12	High-strength carrageenan fibers with compactly packed chain structure induced by combination of Ba2+ and ethanol. Carbohydrate Polymers, 2020, 236, 116057.	10.2	15
13	Cookingâ€Inspired Versatile Design of an Ultrastrong and Tough Polysaccharide Hydrogel through Programmed Supramolecular Interactions. Advanced Materials, 2019, 31, e1902381.	21.0	79
14	Design of mechanically strong and tough alginate hydrogels based on a soft-brittle transition. International Journal of Biological Macromolecules, 2019, 139, 850-857.	7.5	22
15	NaOH induced the complete dissolution of \hat{l}^1 -carrageenan and the corresponding mechanism. Polymer, 2018, 151, 334-339.	3.8	11
16	High elasticity and corresponding microstructure origin of novel long chain poly(amide-block-ether) filament fibers. European Polymer Journal, 2017, 90, 171-182.	5.4	31
17	Self-Associated Polyamide Alloys with Tailored Polymorphism Transition and Lamellar Thickening for Advanced Mechanical Application. ACS Applied Materials & Samp; Interfaces, 2017, 9, 19238-19247.	8.0	18
18	The effect of microstructural evolution during deformation on the post-yielding behavior of self-associated polyamide blends. Polymer, 2017, 117, 231-242.	3.8	20

#	Article	IF	CITATION
19	Preparation and property investigation of crosslinked alginate/silicon dioxide nanocomposite films. Journal of Applied Polymer Science, 2016, 133, .	2.6	50
20	Transient microstructure in long alkane segment polyamide: Deformation mechanism and its temperature dependence. Polymer, 2016, 97, 217-225.	3.8	47
21	Transamidation determination and mechanism of long chain-based aliphatic polyamide alloys with excellent interface miscibility. Polymer, 2015, 59, 16-25.	3.8	28
22	Surface and interface study of ZnO nanoparticles modified by octadecanol phosphate. Surface and Interface Analysis, 2010, 42, 123-128.	1.8	43