Gisela Storz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/812517/publications.pdf

Version: 2024-02-01

6613 17105 31,454 166 79 citations h-index g-index papers

192 192 192 21540 docs citations times ranked citing authors all docs

122

#	Article	IF	CITATIONS
1	Small Proteins; Big Questions. Journal of Bacteriology, 2022, 204, JB0034121.	2.2	33
2	Synthetic Dual-Function RNA Reveals Features Necessary for Target Regulation. Journal of Bacteriology, 2022, 204, JB0034521.	2.2	2
3	KH domain proteins: Another family of bacterial RNA matchmakers?. Molecular Microbiology, 2022, 117, 10-19.	2.5	25
4	Multiple <i>iin vivo</i> roles for the C-terminal domain of the RNA chaperone Hfq. Nucleic Acids Research, 2022, 50, 1718-1733.	14.5	20
5	Dual-function Spot 42 RNA encodes a 15–amino acid protein that regulates the CRP transcription factor. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2119866119.	7.1	23
6	Dual-function AzuCR RNA modulates carbon metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117930119.	7.1	13
7	Regulatory roles of Escherichia coli 5' UTR and ORF-internal RNAs detected by 3' end mapping. ELife, 2021, 10, .	6.0	60
8	Alternative ORFs and small ORFs: shedding light on the dark proteome. Nucleic Acids Research, 2020, 48, 1029-1042.	14.5	205
9	RNA-RNA Interactomes of ProQ and Hfq Reveal Overlapping and Competing Roles. Molecular Cell, 2020, 77, 411-425.e7.	9.7	173
10	<i>Escherichia coli</i> Small Proteome. EcoSal Plus, 2020, 9, .	5 . 4	55
11	Interactions of a Bacterial RND Transporter with a Transmembrane Small Protein in a Lipid Environment. Structure, 2020, 28, 625-634.e6.	3.3	47
12	Prevalence of small base-pairing RNAs derived from diverse genomic loci. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2020, 1863, 194524.	1.9	66
13	Trans-Acting Small RNAs and Their Effects on Gene Expression in <i>Escherichia coli</i> and <i>Salmonella enterica</i> . EcoSal Plus, 2020, 9, .	5.4	161
14	Identifying Small Proteins by Ribosome Profiling with Stalled Initiation Complexes. MBio, 2019, 10, .	4.1	146
15	Definitions and guidelines for research on antibiotic persistence. Nature Reviews Microbiology, 2019, 17, 441-448.	28.6	748
16	Stem-loops direct precise processing of 3′ UTR-derived small RNA MicL. Nucleic Acids Research, 2019, 47, 1482-1492.	14.5	25
17	The small protein MgtS and small RNA MgrR modulate the PitA phosphate symporter to boost intracellular magnesium levels. Molecular Microbiology, 2019, 111, 131-144.	2.5	37
18	Synergistic and Global Effect of Câ€terminus of Hfq in Small RNA Regulation. FASEB Journal, 2019, 33, lb190.	0.5	0

#	Article	IF	CITATIONS
19	Global Regulation by CsrA and Its RNA Antagonists. , 2018, , 339-354.		5
20	Widespread Antisense Transcription in Prokaryotes., 2018,, 191-210.		10
21	Large Noncoding RNAs in Bacteria. , 2018, , 515-526.		3
22	rRNA Mimicry in RNA Regulation of Gene Expression. , 2018, , 101-116.		0
23	Carbohydrate Utilization in Bacteria: Making the Most Out of Sugars with the Help of Small Regulatory RNAs. , 2018, , 229-248.		3
24	Functional Transcriptomics for Bacterial Gene Detectives. , 2018, , 547-561.		0
25	Small RNA-Based Regulation of Bacterial Quorum Sensing and Biofilm Formation. , 2018, , 283-304.		5
26	Structure and Interaction Prediction in Prokaryotic RNA Biology. , 2018, , 563-579.		0
27	Processive Antitermination. , 2018, , 117-131.		1
28	RNA Localization in Bacteria., 2018, , 421-439.		4
29	RNase E and the High-Fidelity Orchestration of RNA Metabolism. , 2018, , 1-18.		5
30	Leaderless mRNAs in the Spotlight: Ancient but Not Outdated!. , 2018, , 155-170.		3
31	Epitranscriptomics: RNA Modifications in Bacteria and Archaea. , 2018, , 399-420.		3
32	Genes within Genes in Bacterial Genomes. , 2018, , 133-154.		4
33	Type I Toxin-Antitoxin Systems: Regulating Toxin Expression via Shine-Dalgarno Sequence Sequestration and Small RNA Binding. , 2018, , 171-190.		5
34	Enzymes Involved in Posttranscriptional RNA Metabolism in Gram-Negative Bacteria., 2018, , 19-35.		2
35	Small RNAs Involved in Regulation of Nitrogen Metabolism. , 2018, , 249-265.		0
36	Regulatory RNAs in Virulence and Host-Microbe Interactions. , 2018, , 305-337.		4

#	Article	IF	CITATIONS
37	RNases and Helicases in Gram-Positive Bacteria. , 2018, , 37-53.		3
38	Synthetic Biology of Small RNAs and Riboswitches. , 2018, , 527-545.		6
39	Cross-Regulation between Bacteria and Phages at a Posttranscriptional Level. Microbiology Spectrum, 2018, 6, .	3.0	15
40	SgrT, a Small Protein That Packs a Sweet Punch. Journal of Bacteriology, 2017, 199, .	2.2	8
41	Increasing intracellular magnesium levels with the 31-amino acid MgtS protein. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5689-5694.	7.1	64
42	ProQ/FinOâ€domain proteins: another ubiquitous family of RNA matchmakers?. Molecular Microbiology, 2017, 104, 905-915.	2.5	127
43	Not just Salk. Science, 2017, 357, 1105-1106.	12.6	4
44	New perspectives: Insights into oxidative stress from bacterial studies. Archives of Biochemistry and Biophysics, 2016, 595, 25-27.	3.0	5
45	Protection against deleterious nitrogen compounds: role of Ïf ^S -dependent small RNAs encoded adjacent to <i>sdiA</i> . Nucleic Acids Research, 2016, 44, 6935-6948.	14.5	40
46	Small RNA with a large impact. Nature, 2016, 529, 472-473.	27.8	5
47	Hfq: the flexible RNA matchmaker. Current Opinion in Microbiology, 2016, 30, 133-138.	5.1	302
48	Alternative Hfqâ€ <scp>sRNA</scp> interaction modes dictate alternative <scp>mRNA</scp> recognition. EMBO Journal, 2015, 34, 2557-2573.	7.8	172
49	RNA reflections: converging on Hfq. Rna, 2015, 21, 511-512.	3.5	42
50	The Escherichia coli Small Protein MntS and Exporter MntP Optimize the Intracellular Concentration of Manganese. PLoS Genetics, 2015, 11, e1004977.	3.5	104
51	How do base-pairing small RNAs evolve?. FEMS Microbiology Reviews, 2015, 39, 379-391.	8.6	76
52	The Ubiquitous yybP-ykoY Riboswitch Is a Manganese-Responsive Regulatory Element. Molecular Cell, 2015, 57, 1099-1109.	9.7	120
53	Global Transcriptional Start Site Mapping Using Differential RNA Sequencing Reveals Novel Antisense RNAs in Escherichia coli. Journal of Bacteriology, 2015, 197, 18-28.	2.2	287
54	Structure and Evolution of Transcriptional Regulatory Networks. , 2014, , 1-16.		1

#	Article	IF	Citations
55	Osmotic Stress. , 2014, , 133-156.		11
56	The small protein floodgates are opening; now the functional analysis begins. BMC Biology, 2014, 12, 96.	3.8	37
57	MicL, a new \inf sup>E-dependent sRNA, combats envelope stress by repressing synthesis of Lpp, the major outer membrane lipoprotein. Genes and Development, 2014, 28, 1620-1634.	5.9	255
58	Small Proteins Can No Longer Be Ignored. Annual Review of Biochemistry, 2014, 83, 753-777.	11.1	346
59	Resistance of Bacterial Spores. , 2014, , 319-332.		10
60	Mutations in Interaction Surfaces Differentially Impact E. coli Hfq Association with Small RNAs and Their mRNA Targets. Journal of Molecular Biology, 2013, 425, 3678-3697.	4.2	127
61	Dual function of the McaS small RNA in controlling biofilm formation. Genes and Development, 2013, 27, 1132-1145.	5.9	143
62	Multiple factors dictate target selection by Hfq-binding small RNAs. EMBO Journal, 2012, 31, 1961-1974.	7.8	99
63	Conserved small protein associates with the multidrug efflux pump AcrB and differentially affects antibiotic resistance. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16696-16701.	7.1	177
64	Competition Assays Using Barcoded Deletion Strains to Gain Insight into Small RNA Function., 2012, 905, 63-72.		2
65	A small RNA that regulates motility and biofilm formation in response to changes in nutrient availability in <i>Escherichia coli</i> i>Nolecular Microbiology, 2012, 84, 17-35.	2.5	189
66	An expanding universe of small proteins. Current Opinion in Microbiology, 2011, 14, 167-173.	5.1	96
67	The Base-Pairing RNA Spot 42 Participates in a Multioutput Feedforward Loop to Help Enact Catabolite Repression in Escherichia coli. Molecular Cell, 2011, 41, 286-297.	9.7	197
68	RNase III Participates in GadY-Dependent Cleavage of the gadX-gadW mRNA. Journal of Molecular Biology, 2011, 406, 29-43.	4.2	101
69	Interesting twists on small RNA themes in <i>Pseudomonas aeruginosa</i> . Molecular Microbiology, 2011, 80, 855-859.	2.5	5
70	Regulation by Small RNAs in Bacteria: Expanding Frontiers. Molecular Cell, 2011, 43, 880-891.	9.7	1,087
71	Discriminating tastes. RNA Biology, 2011, 8, 766-770.	3.1	23
72	Bacterial Small RNA Regulators: Versatile Roles and Rapidly Evolving Variations. Cold Spring Harbor Perspectives in Biology, 2011, 3, a003798-a003798.	5.5	643

#	Article	IF	CITATIONS
73	Membrane Localization of Small Proteins in Escherichia coli. Journal of Biological Chemistry, 2011, 286, 32464-32474.	3.4	67
74	The Escherichia coli MntR Miniregulon Includes Genes Encoding a Small Protein and an Efflux Pump Required for Manganese Homeostasis. Journal of Bacteriology, 2011, 193, 5887-5897.	2.2	137
75	Bacterial Antisense RNAs: How Many Are There, and What Are They Doing?. Annual Review of Genetics, 2010, 44, 167-188.	7.6	331
76	Base pairing small RNAs and their roles in global regulatory networks. FEMS Microbiology Reviews, 2010, 34, 866-882.	8.6	256
77	Reprogramming of anaerobic metabolism by the FnrS small RNA. Molecular Microbiology, 2010, 75, 1215-1231.	2.5	150
78	Small RNAs and Small Proteins Involved in Resistance to Cell Envelope Stress and Acid Shock in <i>Escherichia coli</i> : Analysis of a Bar-Coded Mutant Collection. Journal of Bacteriology, 2010, 192, 59-67.	2.2	99
79	Small Stress Response Proteins in <i>Escherichia coli</i> : Proteins Missed by Classical Proteomic Studies. Journal of Bacteriology, 2010, 192, 46-58.	2.2	157
80	Abundance of type I toxin–antitoxin systems in bacteria: searches for new candidates and discovery of novel families. Nucleic Acids Research, 2010, 38, 3743-3759.	14.5	237
81	Regulatory RNAs in Bacteria. Cell, 2009, 136, 615-628.	28.9	1,404
82	Repression of small toxic protein synthesis by the Sib and OhsC small RNAs. Molecular Microbiology, 2008, 70, 1076-1093.	2.5	166
83	Small membrane proteins found by comparative genomics and ribosome binding site models. Molecular Microbiology, 2008, 70, 1487-1501.	2.5	194
84	Repression of small toxic protein synthesis by the Sib and OhsC small RNAs. Molecular Microbiology, 2008, 70, 1305-1305.	2.5	1
85	Small Toxic Proteins and the Antisense RNAs That Repress Them. Microbiology and Molecular Biology Reviews, 2008, 72, 579-589.	6.6	222
86	Bridges and Chasms: Summary of the IMAGE 2 Meeting in Montreal, Canada, 30 April to 3 May 2007. Journal of Bacteriology, 2008, 190, 792-797.	2.2	1
87	Varied functions of small, nonâ€coding RNAs in bacteria. FASEB Journal, 2008, 22, 97.2.	0.5	0
88	Discovery of Fur binding site clusters in Escherichia coli by information theory models. Nucleic Acids Research, 2007, 35, 6762-6777.	14.5	79
89	A guide to small RNAs in microorganisms. Current Opinion in Microbiology, 2007, 10, 93-95.	5.1	20
90	An antisense RNA controls synthesis of an SOS-induced toxin evolved from an antitoxin. Molecular Microbiology, 2007, 64, 738-754.	2.5	234

#	Article	IF	CITATIONS
91	Modulating the outer membrane with small RNAs. Genes and Development, 2006, 20, 2338-2348.	5.9	196
92	Regulating Bacterial Transcription with Small RNAs. Cold Spring Harbor Symposia on Quantitative Biology, 2006, 71, 269-273.	1.1	29
93	An antibody-based microarray assay for small RNA detection. Nucleic Acids Research, 2006, 34, e52-e52.	14.5	105
94	Target prediction for small, noncoding RNAs in bacteria. Nucleic Acids Research, 2006, 34, 2791-2802.	14.5	219
95	Mutational Analysis To Define an Activating Region on the Redox-Sensitive Transcriptional Regulator OxyR. Journal of Bacteriology, 2006, 188, 8335-8342.	2.2	23
96	Oxygen, Metabolism, and Gene Expression: The T-Rex Connection. Structure, 2005, 13, 2-4.	3.3	1
97	Detection of low-level promoter activity within open reading frame sequences of Escherichia coli. Nucleic Acids Research, 2005, 33, 6268-6276.	14.5	41
98	Detection of 5'- and 3'-UTR-derived small RNAs and cis-encoded antisense RNAs in Escherichia coli. Nucleic Acids Research, 2005, 33, 1040-1050.	14.5	208
99	AN ABUNDANCE OF RNA REGULATORS. Annual Review of Biochemistry, 2005, 74, 199-217.	11.1	337
100	MicC, a Second Small-RNA Regulator of Omp Protein Expression in <i>Escherichia coli </i> Journal of Bacteriology, 2004, 186, 6689-6697.	2.2	226
101	Prominent roles of the NorR and Fur regulators in the Escherichia coli transcriptional response to reactive nitrogen species. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 745-750.	7.1	198
102	Redox regulation of OxyR requires specific disulfide bond formation involving a rapid kinetic reaction path. Nature Structural and Molecular Biology, 2004, 11, 1179-1185.	8.2	235
103	Structural basis for redox regulation of Yap1 transcription factor localization. Nature, 2004, 430, 917-921.	27.8	148
104	A suf operon requirement for Fe-S cluster assembly during iron starvation in Escherichia coli. Molecular Microbiology, 2004, 52, 861-872.	2.5	400
105	Exploiting Thiol Modifications. PLoS Biology, 2004, 2, e400.	5.6	89
106	Controlling mRNA stability and translation with small, noncoding RNAs. Current Opinion in Microbiology, 2004, 7, 140-144.	5.1	328
107	GadY, a Small-RNA Regulator of Acid Response Genes in <i>Escherichia coli</i> Bacteriology, 2004, 186, 6698-6705.	2.2	311
108	Global analysis of small RNA and mRNA targets of Hfq. Molecular Microbiology, 2003, 50, 1111-1124.	2.5	494

#	Article	IF	CITATIONS
109	The Redox Domain of the Yap1p Transcription Factor Contains Two Disulfide Bondsâ€. Biochemistry, 2003, 42, 11982-11991.	2.5	58
110	The SufE Protein and the SufBCD Complex Enhance SufS Cysteine Desulfurase Activity as Part of a Sulfur Transfer Pathway for Fe-S Cluster Assembly in Escherichia coli. Journal of Biological Chemistry, 2003, 278, 45713-45719.	3.4	252
111	Regulatory Disulfides Controlling Transcription Factor Activity in the Bacterial and Yeast Responses to Oxidative Stress., 2003,, 287-310.		0
112	An Expanding Universe of Noncoding RNAs. Science, 2002, 296, 1260-1263.	12.6	562
113	The Sm-like Hfq Protein Increases OxyS RNA Interaction with Target mRNAs. Molecular Cell, 2002, 9, 11-22.	9.7	452
114	Take Your Vitamins with a Pinch of RNA. Molecular Cell, 2002, 10, 1266-1268.	9.7	5
115	Structural Basis of the Redox Switch in the OxyR Transcription Factor. Cell, 2001, 105, 103-113.	28.9	484
116	DNA Microarray-Mediated Transcriptional Profiling of the Escherichia coli Response to Hydrogen Peroxide. Journal of Bacteriology, 2001, 183, 4562-4570.	2.2	752
117	Role of thioredoxin reductase in the Yap1p-dependent response to oxidative stress in Saccharomyces cerevisiae. Molecular Microbiology, 2001, 39, 595-605.	2.5	107
118	Identification of novel small RNAs using comparative genomics and microarrays. Genes and Development, 2001, 15, 1637-1651.	5.9	627
119	Computation-Directed Identification of OxyR DNA Binding Sites in Escherichia coli. Journal of Bacteriology, 2001, 183, 4571-4579.	2.2	126
120	Redox sensing by prokaryotic transcription factors. Biochemical Pharmacology, 2000, 59, 1-6.	4.4	229
121	Thioredoxin 2 ls Involved in the Oxidative Stress Response inEscherichia coli. Journal of Biological Chemistry, 2000, 275, 2505-2512.	3.4	132
122	6S RNA Regulates E. coli RNA Polymerase Activity. Cell, 2000, 101, 613-623.	28.9	436
123	Genomic Expression Programs in the Response of Yeast Cells to Environmental Changes. Molecular Biology of the Cell, 2000, 11, 4241-4257.	2.1	4,281
124	Roles of the Glutathione- and Thioredoxin-Dependent Reduction Systems in the Escherichia Coliand Saccharomyces Cerevisiae Responses to Oxidative Stress. Annual Review of Microbiology, 2000, 54, 439-461.	7.3	636
125	Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiolâ€"disulfide status. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 6161-6165.	7.1	490
126	Small RNAs in Escherichia coli. Trends in Microbiology, 1999, 7, 37-45.	7.7	199

#	Article	IF	Citations
127	Oxidative stress. Current Opinion in Microbiology, 1999, 2, 188-194.	5.1	1,017
128	OxyR and SoxRS Regulation of <i>fur</i> . Journal of Bacteriology, 1999, 181, 4639-4643.	2.2	358
129	The OxyS regulatory RNA represses rpoS translation and binds the Hfq (HF-I) protein. EMBO Journal, 1998, 17, 6061-6068.	7.8	436
130	The Escherichia coli OxyS regulatory RNA represses fhlA translation by blocking ribosome binding. EMBO Journal, 1998, 17, 6069-6075.	7.8	207
131	Activation of the OxyR Transcription Factor by Reversible Disulfide Bond Formation. Science, 1998, 279, 1718-1722.	12.6	1,112
132	Characterization of an Unstable Allele of the Arabidopsis HY4 Locus. Genetics, 1998, 149, 1575-1585.	2.9	7
133	A Small, Stable RNA Induced by Oxidative Stress: Role as a Pleiotropic Regulator and Antimutator. Cell, 1997, 90, 43-53.	28.9	459
134	Regulation of Bacterial Responses to Oxidative Stress. Current Topics in Cellular Regulation, 1997, 35, 163-177.	9.6	37
135	Analysis of fast neutron-generated mutants at the Arabidopsis thaliana HY4 locus. Plant Journal, 1996, 10, 755-760.	5.7	102
136	Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis. Plant Journal, 1995, 8, 659-671.	5.7	545
137	Regulation of bacterial gene expression in response to oxidative stress. Methods in Enzymology, 1994, 236, 196-207.	1.0	28
138	Free radicals, peroxides and the control of gene expression. Chemistry and Biology, 1994, 1, xvi-xvii.	6.0	0
139	The dps promoter is activated by OxyR during growth and by IHF and $\ddot{l}f\sin$ stationary phase. Molecular Microbiology, 1994, 13, 265-272.	2.5	416
140	Redox-dependent shift of OxyR-DNA contacts along an extended DNA-binding site: A mechanism for differential promoter selection. Cell, 1994, 78, 897-909.	28.9	375
141	[17] OxyR regulon. Methods in Enzymology, 1994, 234, 217-223.	1.0	85
142	Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 7017-7021.	7.1	768
143	OxyR: A Regulator of Antioxidant Genes. Journal of Nutrition, 1992, 122, 627-630.	2.9	118
144	High intensity and blue light regulated expression of chimeric chalcone synthase genes in transgenic Arabidopsis thaliana plants. Molecular Genetics and Genomics, 1991, 226, 449-56.	2.4	83

#	Article	lF	CITATIONS
145	Bacterial defenses against oxidative stress. Trends in Genetics, 1990, 6, 363-368.	6.7	324
146	The OxyR regulon. Antonie Van Leeuwenhoek, 1990, 58, 157-161.	1.7	85
147	Identification and molecular analysis of oxyR-regulated promoters important for the bacterial adaptation to oxidative stress. Journal of Molecular Biology, 1989, 210, 709-719.	4.2	201
148	Hydrogen peroxide-inducible proteins in Salmonella typhimurium overlap with heat shock and other stress proteins Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 8059-8063.	7.1	444
149	Characterization of polysaccharides isolated from maple syrup. Phytochemistry, 1986, 25, 437-441.	2.9	16
150	The General Stress Response in Gram-Negative Bacteria., 0,, 251-289.		41
151	Sensing and Responding to Reactive Oxygen and Nitrogen Species. , 0, , 157-173.		5
152	Sensing Metals: the Versatility of Fur. , 0, , 191-204.		0
153	Small Regulatory RNAs in the Enterobacterial Response to Envelope Damage and Oxidative Stress. , 0, , $211-228$.		5
154	Dual-Function RNAs., 0,, 471-485.		3
155	Origin, Evolution, and Loss of Bacterial Small RNAs. , 0, , 487-497.		4
156	Proteins That Chaperone RNA Regulation. , 0, , 383-397.		7
157	RNA Thermometers in Bacterial Pathogens. , 0, , 55-73.		10
158	6S RNA, a Global Regulator of Transcription. , 0, , 355-367.		6
159	Small-Molecule-Binding Riboswitches. , 0, , 75-88.		3
160	Sponges and Predators in the Small RNA World. , 0, , 441-451.		4
161	Bacterial Small RNAs in Mixed Regulatory Networks. , 0, , 453-469.		0
162	Roles of mRNA Stability, Translational Regulation, and Small RNAs in Stress Response Regulation. , 0, , 59-73.		4

#	Article	IF	CITATIONS
163	Bacterial Iron Homeostasis Regulation by sRNAs. , 0, , 267-281.		6
164	Cross-Regulation between Bacteria and Phages at a Posttranscriptional Level. , 0, , 499-514.		2
165	Bacterial Y RNAs: Gates, Tethers, and tRNA Mimics. , 0, , 369-381.		1
166	The T-Box Riboswitch: tRNA as an Effector to Modulate Gene Regulation. , 0, , 89-100.		2