Dohun Pyeon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8124532/publications.pdf

Version: 2024-02-01

37	7,027	22	35
papers	citations	h-index	g-index
39	39	39	16420
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Abstract P042: Chemokine dysregulation creates the immunosuppressive tumor microenvironment and promotes human papillomavirus-associated head and neck cancer., 2022,,.		1
2	APOBEC3: Friend or Foe in Human Papillomavirus Infection and Oncogenesis?. Annual Review of Virology, 2022, 9, 375-395.	6.7	11
3	The Key Differences between Human Papillomavirus-Positive and -Negative Head and Neck Cancers: Biological and Clinical Implications. Cancers, 2021, 13, 5206.	3.7	30
4	The antiviral immune forces awaken in the cancer wars. PLoS Pathogens, 2020, 16, e1008814.	4.7	7
5	The multifarious roles of the chemokine CXCL14 in cancer progression and immune responses. Molecular Carcinogenesis, 2020, 59, 794-806.	2.7	58
6	Abstract A36: CXCL14-mediated antigen-specific CD8+ T-cell responses suppress HPV-positive head and neck cancer., 2020,,.		0
7	CXCL14 suppresses human papillomavirus-associated head and neck cancer through antigen-specific CD8+ T-cell responses by upregulating MHC-I expression. Oncogene, 2019, 38, 7166-7180.	5.9	38
8	HIV-1 Impairment via UBE3A and HIV-1 Nef Interactions Utilizing the Ubiquitin Proteasome System. Viruses, 2019, 11, 1098.	3.3	7
9	Human Papillomavirus 16 E7 Stabilizes APOBEC3A Protein by Inhibiting Cullin 2-Dependent Protein Degradation. Journal of Virology, 2018, 92, .	3.4	48
10	Methylated genomic loci encoding microRNA as a biomarker panel in tissue and saliva for head and neck squamous cell carcinoma. Clinical Epigenetics, 2018, 10, 43.	4.1	17
11	DNA Tumor Virus Regulation of Host DNA Methylation and Its Implications for Immune Evasion and Oncogenesis. Viruses, 2018, 10, 82.	3.3	82
12	Evasion of host immune defenses by human papillomavirus. Virus Research, 2017, 231, 21-33.	2.2	142
13	High-Risk Human Papillomavirus E7 Alters Host DNA Methylome and Represses HLA-E Expression in Human Keratinocytes. Scientific Reports, 2017, 7, 3633.	3.3	45
14	Roles of APOBEC3A and APOBEC3B in Human Papillomavirus Infection and Disease Progression. Viruses, 2017, 9, 233.	3.3	79
15	Abstract A07: CXCL14 expression inhibits tumor growth by reversing human papillomavirus-mediated immune suppression., 2017,,.		О
16	Suppression of Antitumor Immune Responses by Human Papillomavirus through Epigenetic Downregulation of CXCL14. MBio, 2016, 7, .	4.1	88
17	Function of ubiquitin (Ub) specific protease 15 (USP15) in HIV-1 replication and viral protein degradation. Virus Research, 2016, 223, 161-169.	2.2	13
18	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701

#	Article	IF	Citations
19	Role of the host restriction factor APOBEC3 on papillomavirus evolution. Virus Evolution, 2015, 1, vev 015 .	4.9	57
20	Interaction between Nef and INI1/SMARCB1 augments replicability of HIV-1 in resting human peripheral blood mononuclear cells. Archives of Virology, 2015, 160, 727-737.	2.1	2
21	Molecular transitions from papillomavirus infection to cervical precancer and cancer: Role of stromal estrogen receptor signaling. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3255-64.	7.1	197
22	Comparative molecular genetic analysis of simian and human HIV-1 integrase interactor INI1/SMARCB1/SNF5. Archives of Virology, 2015, 160, 3085-3091.	2.1	5
23	APOBEC3A Functions as a Restriction Factor of Human Papillomavirus. Journal of Virology, 2015, 89, 688-702.	3.4	160
24	APOBEC3 in papillomavirus restriction, evolution and cancer progression. Oncotarget, 2015, 6, 39385-39386.	1.8	6
25	The Antiviral Restriction Factors IFITM1, 2 and 3 Do Not Inhibit Infection of Human Papillomavirus, Cytomegalovirus and Adenovirus. PLoS ONE, 2014, 9, e96579.	2.5	67
26	Human papillomavirus infection is inhibited by host autophagy in primary human keratinocytes. Virology, 2013, 437, 12-19.	2.4	81
27	Human Keratinocyte Cultures in the Investigation of Early Steps of Human Papillomavirus Infection. Methods in Molecular Biology, 2013, 1195, 219-238.	0.9	10
28	Inhibition of Nuclear Factor-Kappa B Activation Decreases Survival of Mycobacterium tuberculosis in Human Macrophages. PLoS ONE, 2013, 8, e61925.	2.5	82
29	Orphan Nuclear Receptor PNR/NR2E3 Stimulates p53 Functions by Enhancing p53 Acetylation. Molecular and Cellular Biology, 2012, 32, 26-35.	2.3	12
30	Novel antivirals inhibit early steps in HPV infection. Antiviral Research, 2012, 93, 280-287.	4.1	6
31	Establishment of Human Papillomavirus Infection Requires Cell Cycle Progression. PLoS Pathogens, 2009, 5, e1000318.	4.7	271
32	Fundamental Differences in Cell Cycle Deregulation in Human Papillomavirus–Positive and Human Papillomavirus–Negative Head/Neck and Cervical Cancers. Cancer Research, 2007, 67, 4605-4619.	0.9	407
33	Production of infectious human papillomavirus independently of viral replication and epithelial cell differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9311-9316.	7.1	109
34	Prostaglandin E2 Increases Bovine Leukemia Virustax and pol mRNA Levels via Cyclooxygenase 2: Regulation by Interleukin-2, Interleukin-10, and Bovine Leukemia Virus. Journal of Virology, 2000, 74, 5740-5745.	3.4	55
35	Regulation of Bovine Leukemia Virus <i>tax</i> and <i>pol</i> mRNA Levels by Interleukin-2 and -10. Journal of Virology, 1999, 73, 8427-8434.	3.4	17
36	Interleukin-12 p40 mRNA Expression in Bovine Leukemia Virus-Infected Animals: Increase in Alymphocytosis but Decrease in Persistent Lymphocytosis. Journal of Virology, 1998, 72, 6917-6921.	3.4	35

#	Article	IF	CITATIONS
37	Increased interleukin-10 mRNA expression in tumor-bearing or persistently lymphocytotic animals infected with bovine leukemia virus. Journal of Virology, 1996, 70, 5706-5710.	3.4	80