Stephen David Worrall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8123834/publications.pdf

Version: 2024-02-01

28 papers

1,428 citations

430874 18 h-index 27 g-index

39 all docs 39 docs citations

39 times ranked 2891 citing authors

#	Article	IF	CITATIONS
1	Effect of methacrylic acid and pendant vinyl groups on the mechanical properties of highly stretchable core–shell nanostructured films deposited from water. Polymer Chemistry, 2021, 12, 466-477.	3.9	O
2	Using highly time-resolved online mass spectrometry to examine biogenic and anthropogenic contributions to organic aerosol in Beijing. Faraday Discussions, 2021, 226, 382-408.	3.2	13
3	Key Role of NO ₃ Radicals in the Production of Isoprene Nitrates and Nitrooxyorganosulfates in Beijing. Environmental Science & Environmenta	10.0	18
4	Low-NO atmospheric oxidation pathways in a polluted megacity. Atmospheric Chemistry and Physics, 2021, 21, 1613-1625.	4.9	24
5	Evaluating the sensitivity of radical chemistry and ozone formation to ambient VOCs and NO _{<i>x</i>} in Beijing. Atmospheric Chemistry and Physics, 2021, 21, 2125-2147.	4.9	64
6	Chemical characterisation of benzene oxidation products under high- and low-NO _{<i>x</i>} conditions using chemical ionisation mass spectrometry. Atmospheric Chemistry and Physics, 2021, 21, 3473-3490.	4.9	16
7	Measured Solid State and Sub-Cooled Liquid Vapour Pressures of Benzaldehydes Using Knudsen Effusion Mass Spectrometry. Atmosphere, 2021, 12, 397.	2.3	1
8	A review of gas-surface interaction models for orbital aerodynamics applications. Progress in Aerospace Sciences, 2020, 119, 100675.	12.1	41
9	Strong anthropogenic control of secondary organic aerosol formation from isoprene in Beijing. Atmospheric Chemistry and Physics, 2020, 20, 7531-7552.	4.9	35
10	Accessible and sustainable $Cu(0)$ -mediated radical polymerisation for the functionalisation of surfaces. Polymer Chemistry, 2020, 11, 3831-3840.	3.9	4
11	Measured solid state and subcooled liquid vapour pressures of nitroaromatics using Knudsen effusion mass spectrometry. Atmospheric Chemistry and Physics, 2020, 20, 8293-8314.	4.9	6
12	The effect of structure and isomerism on the vapor pressures of organic molecules and its potential atmospheric relevance. Aerosol Science and Technology, 2019, 53, 1040-1055.	3.1	16
13	A Large Source of Atomic Chlorine From ClNO ₂ Photolysis at a U.K. Landfill Site. Geophysical Research Letters, 2019, 46, 8508-8516.	4.0	11
14	A method for extracting calibrated volatility information from the FIGAERO-HR-ToF-CIMS and its experimental application. Atmospheric Measurement Techniques, 2019, 12, 1429-1439.	3.1	42
15	Intercomparison of nitrous acid (HONO) measurement techniques in a megacity (Beijing). Atmospheric Measurement Techniques, 2019, 12, 6449-6463.	3.1	44
16	Observations of organic and inorganic chlorinated compounds and their contribution to chlorine radical concentrations in an urban environment in northern Europe during the wintertime. Atmospheric Chemistry and Physics, 2018, 18, 13481-13493.	4.9	41
17	Production of N ₂ O ₅ and ClNO ₂ in summer in urban Beijing, China. Atmospheric Chemistry and Physics, 2018, 18, 11581-11597.	4.9	57
18	Anodic dissolution growth of metal–organic framework HKUST-1 monitored <i>via in situ</i> electrochemical atomic force microscopy. CrystEngComm, 2018, 20, 4421-4427.	2.6	15

#	Article	IF	CITATIONS
19	Hydrogen Evolution at Liquid Liquid Interfaces Catalyzed by 2D Materials. ChemNanoMat, 2017, 3, 428-435.	2.8	29
20	Desalination and Nanofiltration through Functionalized Laminar MoS ₂ Membranes. ACS Nano, 2017, 11, 11082-11090.	14.6	275
21	Electronic structure design for nanoporous, electrically conductive zeolitic imidazolate frameworks. Journal of Materials Chemistry C, 2017, 5, 7726-7731.	5. 5	40
22	Hydrogen evolution and capacitance behavior of Au/Pd nanoparticle-decorated graphene heterostructures. Applied Materials Today, 2017, 8, 125-131.	4.3	20
23	Comparison of Two-Dimensional Transition Metal Dichalcogenides for Electrochemical Supercapacitors. Electrochimica Acta, 2016, 201, 30-37.	5.2	211
24	Facile fabrication of metal–organic framework HKUST-1-based rewritable data storage devices. Journal of Materials Chemistry C, 2016, 4, 8687-8695.	5 . 5	25
25	Metal-organic framework templated electrodeposition of functional gold nanostructures. Electrochimica Acta, 2016, 222, 361-369.	5. 2	40
26	Electrochemical deposition of zeolitic imidazolate framework electrode coatings for supercapacitor electrodes. Electrochimica Acta, 2016, 197, 228-240.	5.2	116
27	Electron transfer kinetics on natural crystals of MoS ₂ and graphite. Physical Chemistry Chemical Physics, 2015, 17, 17844-17853.	2.8	57
28	Electron Transfer Kinetics on Mono- and Multilayer Graphene. ACS Nano, 2014, 8, 10089-10100.	14.6	160