Gisela Di Venanzio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8123808/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The fliR gene contributes to the virulence of S. marcescens in a Drosophila intestinal infection model. Scientific Reports, 2022, 12, 3068.	3.3	3
2	The Phenylacetic Acid Catabolic Pathway Regulates Antibiotic and Oxidative Stress Responses in Acinetobacter. MBio, 2022, 13, e0186321.	4.1	18
3	InvL, an Invasin-Like Adhesin, Is a Type II Secretion System Substrate Required for Acinetobacter baumannii Uropathogenesis. MBio, 2022, 13, .	4.1	11
4	Evolutionarily stable gene clusters shed light on the common grounds of pathogenicity in the Acinetobacter calcoaceticus-baumannii complex. PLoS Genetics, 2022, 18, e1010020.	3.5	10
5	Capsule carbohydrate structure determines virulence in Acinetobacter baumannii. PLoS Pathogens, 2021, 17, e1009291.	4.7	59
6	Modern Acinetobacter baumannii clinical isolates replicate inside spacious vacuoles and egress from macrophages. PLoS Pathogens, 2021, 17, e1009802.	4.7	21
7	Plasmid-Encoded H-NS Controls Extracellular Matrix Composition in a Modern <i>Acinetobacter baumannii</i> Urinary Isolate. Journal of Bacteriology, 2021, 203, e0027721.	2.2	9
8	Peptidoglycan editing provides immunity to <i>Acinetobacter baumannii</i> during bacterial warfare. Science Advances, 2020, 6, eabb5614.	10.3	44
9	The Glycoprotease CpaA Secreted by Medically Relevant Acinetobacter Species Targets Multiple <i>O</i> -Linked Host Glycoproteins. MBio, 2020, 11, .	4.1	31
10	Urinary tract colonization is enhanced by a plasmid that regulates uropathogenic Acinetobacter baumannii chromosomal genes. Nature Communications, 2019, 10, 2763.	12.8	80
11	Multidrug-resistant plasmids repress chromosomally encoded T6SS to enable their dissemination. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1378-1383.	7.1	83
12	Pathogenic Acinetobacter species have a functional type I secretion system and contact-dependent inhibition systems. Journal of Biological Chemistry, 2017, 292, 9075-9087.	3.4	73
13	A pore-forming toxin enables <i>Serratia</i> a nonlytic egress from host cells. Cellular Microbiology, 2017, 19, e12656.	2.1	16
14	Serratia marcescens ShlA Pore-Forming Toxin Is Responsible for Early Induction of Autophagy in Host Cells and Is Transcriptionally Regulated by RcsB. Infection and Immunity, 2014, 82, 3542-3554.	2.2	64
15	The PhoP/PhoQ System and Its Role in Serratia marcescens Pathogenesis. Journal of Bacteriology, 2012, 194, 2949-2961.	2.2	37
16	Serratia marcescens Is Able to Survive and Proliferate in Autophagic-Like Vacuoles inside Non-Phagocytic Cells. PLoS ONE, 2011, 6, e24054.	2.5	46