
Kim Q Do

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8123261/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	N-Acetyl Cysteine as a Glutathione Precursor for Schizophrenia—A Double-Blind, Randomized, Placebo-Controlled Trial. Biological Psychiatry, 2008, 64, 361-368.	1.3	489
2	Schizophrenia: glutathione deficit in cerebrospinal fluid and prefrontal cortex in vivo. European Journal of Neuroscience, 2000, 12, 3721-3728.	2.6	461
3	Murine brain macrophages induce NMDA receptor mediated neurotoxicity in vitro by secreting glutamate. Neuroscience Letters, 1991, 133, 159-162.	2.1	425
4	Potassium conductances in hippocampal neurons blocked by excitatory amino-acid transmitters. Nature, 1990, 347, 765-767.	27.8	421
5	Mapping the human connectome at multiple scales with diffusion spectrum MRI. Journal of Neuroscience Methods, 2012, 203, 386-397.	2.5	413
6	Perineuronal nets protect fast-spiking interneurons against oxidative stress. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9130-9135.	7.1	408
7	Redox dysregulation, neurodevelopment, and schizophrenia. Current Opinion in Neurobiology, 2009, 19, 220-230.	4.2	348
8	Glutathione Precursor, N-Acetyl-Cysteine, Improves Mismatch Negativity in Schizophrenia Patients. Neuropsychopharmacology, 2008, 33, 2187-2199.	5.4	321
9	Prevention of Psychosis. JAMA Psychiatry, 2020, 77, 755.	11.0	287
10	Oxidative stress-driven parvalbumin interneuron impairment as a common mechanism in models of schizophrenia. Molecular Psychiatry, 2017, 22, 936-943.	7.9	280
11	Impaired glutathione synthesis in schizophrenia: Convergent genetic and functional evidence. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16621-16626.	7.1	275
12	Linking early-life NMDAR hypofunction and oxidative stress in schizophrenia pathogenesis. Nature Reviews Neuroscience, 2016, 17, 125-134.	10.2	256
13	Schizophrenia and Oxidative Stress: Glutamate Cysteine Ligase Modifier as a Susceptibility Gene. American Journal of Human Genetics, 2006, 79, 586-592.	6.2	209
14	Early-Life Insults Impair Parvalbumin Interneurons via Oxidative Stress: Reversal by N-Acetylcysteine. Biological Psychiatry, 2013, 73, 574-582.	1.3	201
15	Redox dysregulation, neuroinflammation, and NMDA receptor hypofunction: A "central hub―in schizophrenia pathophysiology?. Schizophrenia Research, 2016, 176, 41-51.	2.0	194
16	Redox Dysregulation Affects the Ventral But Not Dorsal Hippocampus: Impairment of Parvalbumin Neurons, Gamma Oscillations, and Related Behaviors. Journal of Neuroscience, 2010, 30, 2547-2558.	3.6	180
17	Juvenile Antioxidant Treatment Prevents Adult Deficits in a Developmental Model of Schizophrenia. Neuron, 2014, 83, 1073-1084.	8.1	169
18	TORC1 is a calcium- and cAMP-sensitive coincidence detector involved in hippocampal long-term synaptic plasticity. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4700-4705.	7.1	168

#	Article	IF	CITATIONS
19	In Vitro Release of Endogenous Excitatory Sulfur-Containing Amino Acids from Various Rat Brain Regions. Journal of Neurochemistry, 1986, 46, 779-786.	3.9	157
20	Synaptic plasticity impairment and hypofunction of NMDA receptors induced by glutathione deficit: Relevance to schizophrenia. Neuroscience, 2006, 137, 807-819.	2.3	157
21	Targeting Oxidative Stress and Aberrant Critical Period Plasticity in the Developmental Trajectory to Schizophrenia. Schizophrenia Bulletin, 2015, 41, 835-846.	4.3	135
22	Screening of Thiol Compounds: Depolarization-Induced Release of Glutathione and Cysteine from Rat Brain Slices. Journal of Neurochemistry, 1992, 59, 181-189.	3.9	129
23	Dopamine-induced oxidative stress in neurons with glutathione deficit: implication for schizophrenia. Schizophrenia Research, 2003, 62, 213-224.	2.0	125
24	N-acetylcysteine in a Double-Blind Randomized Placebo-Controlled Trial: Toward Biomarker-Guided Treatment in Early Psychosis. Schizophrenia Bulletin, 2018, 44, 317-327.	4.3	121
25	Tau accumulation in astrocytes of the dentate gyrus induces neuronal dysfunction and memory deficits in Alzheimer's disease. Nature Neuroscience, 2020, 23, 1567-1579.	14.8	121
26	The thalamic reticular nucleus in schizophrenia and bipolar disorder: role of parvalbumin-expressing neuron networks and oxidative stress. Molecular Psychiatry, 2018, 23, 2057-2065.	7.9	116
27	Decreased Brain Levels of Vitamin B12 in Aging, Autism and Schizophrenia. PLoS ONE, 2016, 11, e0146797.	2.5	114
28	Redox Dysregulation in the Pathophysiology of Schizophrenia and Bipolar Disorder: Insights from Animal Models. Antioxidants and Redox Signaling, 2013, 18, 1428-1443.	5.4	102
29	Delayed increase of extracellular arginine, the nitric oxide precursor, following electrical white matter stimulation in rat cerebellar slices. Neuroscience Letters, 1992, 142, 211-214.	2.1	100
30	N-Acetylcysteine Normalizes Neurochemical Changes in the Glutathione-Deficient Schizophrenia Mouse Model During Development. Biological Psychiatry, 2012, 71, 1006-1014.	1.3	100
31	Curcumin, quercetin, and tBHQ modulate glutathione levels in astrocytes and neurons: importance of the glutamate cysteine ligase modifier subunit. Journal of Neurochemistry, 2009, 108, 1410-1422.	3.9	95
32	Glutathione deficit impairs myelin maturation: relevance for white matter integrity in schizophrenia patients. Molecular Psychiatry, 2015, 20, 827-838.	7.9	95
33	<scp>T</scp> reatment and <scp>E</scp> arly <scp>I</scp> ntervention in <scp>P</scp> sychosis <scp>P</scp> rogram (<scp>TIPP</scp> â€ <scp>L</scp> ausanne): implementation of an early intervention programme for psychosis in <scp>S</scp> witzerland. Microbial Biotechnology, 2013, 7, 322-328.	1.7	92
34	Longitudinal neurochemical modifications in the aging mouse brain measured inÂvivo by 1H magnetic resonance spectroscopy. Neurobiology of Aging, 2014, 35, 1660-1668.	3.1	90
35	Childhood sexual and physical abuse: age at exposure modulates impact on functional outcome in early psychosis patients. Psychological Medicine, 2015, 45, 2727-2736.	4.5	88
36	Glutathione deficit during development induces anomalies in the rat anterior cingulate GABAergic neurons: Relevance to schizophrenia. Neurobiology of Disease, 2006, 22, 624-637.	4.4	87

#	Article	IF	CITATIONS
37	Genetic Polymorphism Associated Prefrontal Glutathione and Its Coupling With Brain Glutamate and Peripheral Redox Status in Early Psychosis. Schizophrenia Bulletin, 2016, 42, 1185-1196.	4.3	83
38	Behavioral phenotyping of glutathione-deficient mice: Relevance to schizophrenia and bipolar disorder. Behavioural Brain Research, 2012, 226, 563-570.	2.2	82
39	Prolonged Period of Cortical Plasticity upon Redox Dysregulation in Fast-Spiking Interneurons. Biological Psychiatry, 2015, 78, 396-402.	1.3	80
40	Transitory glutathione deficit during brain development induces cognitive impairment in juvenile and adult rats: Relevance to schizophrenia. Neurobiology of Disease, 2007, 26, 634-645.	4.4	77
41	MMP9/RAGE pathway overactivation mediates redox dysregulation and neuroinflammation, leading to inhibitory/excitatory imbalance: a reverse translation study in schizophrenia patients. Molecular Psychiatry, 2020, 25, 2889-2904.	7.9	76
42	Association of Age, Antipsychotic Medication, and Symptom Severity in Schizophrenia With Proton Magnetic Resonance Spectroscopy Brain Glutamate Level. JAMA Psychiatry, 2021, 78, 667.	11.0	72
43	Characterizing the connectome in schizophrenia with diffusion spectrum imaging. Human Brain Mapping, 2015, 36, 354-366.	3.6	70
44	Release of neuroactive substances: homocysteic acid as an endogenous agonist of the NMDA receptor. Journal of Neural Transmission, 1988, 72, 185-190.	2.8	66
45	Release of the nitric oxide precursor, arginine, from the thalamus upon sensory afferent stimulation, and its effect on thalamic neurons in vivo. Neuroscience, 1994, 60, 581-586.	2.3	65
46	Glutathione Precursor N-Acetyl-Cysteine Modulates EEG Synchronization in Schizophrenia Patients: A Double-Blind, Randomized, Placebo-Controlled Trial. PLoS ONE, 2012, 7, e29341.	2.5	63
47	Unusually strong lipophilicity of †fat' or †super' amino-acids, including a new reference value for glycine. Experientia, 1980, 36, 1203-1204.	1.2	62
48	Release of N-Acetylaspartylglutamate on Depolarization of Rat Brain Slices. Journal of Neurochemistry, 1988, 51, 1919-1923.	3.9	62
49	Low brain glutathione and ascorbic acid associated with dopamine uptake inhibition during rat's development induce long-term cognitive deficit: relevance to schizophrenia. Neurobiology of Disease, 2004, 15, 93-105.	4.4	62
50	Potential Roles of Redox Dysregulation in the Development of Schizophrenia. Biological Psychiatry, 2020, 88, 326-336.	1.3	62
51	Glutamate-induced homocysteic acid release from astrocytes: possible implication in glia-neuron signaling. Neuroscience, 2004, 124, 377-386.	2.3	59
52	Release of endogenous amino acids, including homocysteic acid and cysteine sulphinic acid, from rat hippocampal slices evoked by electrical stimulation of Schaffer collateral-commissural fibres. Neuroscience, 1992, 49, 557-570.	2.3	58
53	Dysconnection Topography in Schizophrenia Revealed with State-Space Analysis of EEG. PLoS ONE, 2007, 2, e1059.	2.5	58
54	Genetic Dysregulation of Glutathione Synthesis Predicts Alteration of Plasma Thiol Redox Status in Schizophrenia. Antioxidants and Redox Signaling, 2011, 15, 2003-2010.	5.4	56

#	Article	IF	CITATIONS
55	Caught in vicious circles: a perspective on dynamic feed-forward loops driving oxidative stress in schizophrenia. Molecular Psychiatry, 2022, 27, 1886-1897.	7.9	53
56	Effect of Climbing Fiber Deprivation on Release of Endogenous Aspartate, Glutamate, and Homocysteate in Slices of Rat Cerebellar Hemispheres and Vermis. Journal of Neurochemistry, 1990, 54, 1533-1540.	3.9	52
57	Neurochemical profile of the developing mouse cortex determined by <i>in vivo</i> ¹ H NMR spectroscopy at 14.1 T and the effect of recurrent anaesthesia. Journal of Neurochemistry, 2010, 115, 1466-1477.	3.9	51
58	Homocysteate, an Excitatory Transmitter Candidate Localized in Glia. European Journal of Neuroscience, 1991, 3, 1370-1373.	2.6	50
59	βâ€Adrenergic Stimulation Promotes Homocysteic Acid Release from Astrocyte Cultures: Evidence for a Role of Astrocytes in the Modulation of Synaptic Transmission. Journal of Neurochemistry, 1997, 68, 2386-2394.	3.9	49
60	An animal model with relevance to schizophrenia: sex-dependent cognitive deficits in osteogenic disorder-Shionogi rats induced by glutathione synthesis and dopamine uptake inhibition during development. Neuroscience, 2004, 123, 821-834.	2.3	48
61	Glutamate-induced Release of the Nitric Oxide Precursor, Arginine, From Glial Cells. European Journal of Neuroscience, 1997, 9, 2248-2258.	2.6	45
62	Alpha rhythm and hypofrontality in schizophrenia. Acta Psychiatrica Scandinavica, 2008, 118, 188-199.	4.5	44
63	N-acetylcysteine add-on treatment leads to an improvement of fornix white matter integrity in early psychosis: a double-blind randomized placebo-controlled trial. Translational Psychiatry, 2018, 8, 220.	4.8	44
64	Interaction Testing and Polygenic Risk Scoring to Estimate the Association of Common Genetic Variants With Treatment Resistance in Schizophrenia. JAMA Psychiatry, 2022, 79, 260.	11.0	44
65	Fast oscillatory activity in the anterior cingulate cortex: dopaminergic modulation and effect of perineuronal net loss. Frontiers in Cellular Neuroscience, 2014, 8, 244.	3.7	42
66	Glutathione Deficit Affects the Integrity and Function of the Fimbria/Fornix and Anterior Commissure in Mice: Relevance for Schizophrenia. International Journal of Neuropsychopharmacology, 2016, 19, pyv110.	2.1	40
67	A developmental redox dysregulation leads to spatio-temporal deficit of parvalbumin neuron circuitry in a schizophrenia mouse model. Schizophrenia Research, 2019, 213, 96-106.	2.0	40
68	Mitochondrial, exosomal miR137-COX6A2 and gamma synchrony as biomarkers of parvalbumin interneurons, psychopathology, and neurocognition in schizophrenia. Molecular Psychiatry, 2022, 27, 1192-1204.	7.9	40
69	Impaired Metabolic Reactivity to Oxidative Stress in Early Psychosis Patients. Schizophrenia Bulletin, 2014, 40, 973-983.	4.3	39
70	European college of neuropsychopharmacology network on the prevention of mental disorders and mental health promotion (ECNP PMD-MHP). European Neuropsychopharmacology, 2019, 29, 1301-1311.	0.7	38
71	Mild Depressive Symptoms Mediate the Impact of Childhood Trauma on Long-Term Functional Outcome in Early Psychosis Patients. Schizophrenia Bulletin, 2017, 43, 1027-1035.	4.3	37
72	Redox dysregulation as a link between childhood trauma and psychopathological and neurocognitive profile in patients with early psychosis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12495-12500.	7.1	37

#	Article	IF	CITATIONS
73	Age at the Time of Exposure to Trauma Modulates the Psychopathological Profile in Patients With Early Psychosis. Journal of Clinical Psychiatry, 2016, 77, e612-e618.	2.2	37
74	Arginine Availability Controls the N-Methyl-d-Aspartate-Induced Nitric Oxide Synthesis: Involvement of a Glial-Neuronal Arginine Transfer. Journal of Neurochemistry, 2002, 71, 2139-2144.	3.9	35
75	Purine metabolite inosine is an adrenergic neurotrophic substance for cultured chicken sympathetic neurons Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 8301-8305.	7.1	34
76	New model of glutathione deficit during development: Effect on lipid peroxidation in the rat brain. Journal of Neuroscience Research, 2002, 70, 774-783.	2.9	34
77	Impaired fornix–hippocampus integrity is linked to peripheral glutathione peroxidase in early psychosis. Translational Psychiatry, 2016, 6, e859-e859.	4.8	32
78	A lack of GluN2A-containing NMDA receptors confers a vulnerability to redox dysregulation: Consequences on parvalbumin interneurons, and their perineuronal nets. Neurobiology of Disease, 2018, 109, 64-75.	4.4	32
79	Treatment in early psychosis with N-acetyl-cysteine for 6 months improves low-level auditory processing: Pilot study. Schizophrenia Research, 2018, 191, 80-86.	2.0	31
80	Brain connectivity alterations in early psychosis: from clinical to neuroimaging staging. Translational Psychiatry, 2019, 9, 62.	4.8	31
81	Impulsivity in early psychosis: A complex link with violent behaviour and a target for intervention. European Psychiatry, 2018, 49, 30-36.	0.2	30
82	Cysteine: Depolarization-Induced Release from Rat Brain In Vitro. Journal of Neurochemistry, 1989, 52, 1801-1806.	3.9	29
83	Sensorimotor Induction of Auditory Misattribution in Early Psychosis. Schizophrenia Bulletin, 2020, 46, 947-954.	4.3	28
84	Glial-derived arginine, the nitric oxide precursor, protects neurons from NMDA-induced excitotoxicity. European Journal of Neuroscience, 2001, 14, 1762-1770.	2.6	27
85	Cannabis use in early psychosis is associated with reduced glutamate levels in the prefrontal cortex. Psychopharmacology, 2018, 235, 13-22.	3.1	27
86	Synthesis and Biological Properties of Enkephalin-like Peptides Containing Carboranylalanine in Place of Phenylalanine. Helvetica Chimica Acta, 1981, 64, 2078-2083.	1.6	26
87	A glutathione deficit alters dopamine modulation of L-type calcium channels via D2 and ryanodine receptors in neurons. Free Radical Biology and Medicine, 2008, 44, 1042-1054.	2.9	26
88	Tollip, an early regulator of the acute inflammatory response in the substantia nigra. Journal of Neuroinflammation, 2016, 13, 303.	7.2	26
89	N-Acetyl-Cysteine Supplementation Improves Functional Connectivity Within the Cingulate Cortex in Early Psychosis: A Pilot Study. International Journal of Neuropsychopharmacology, 2019, 22, 478-487.	2.1	25
90	Oxidative/Nitrosative Stress in Psychiatric Disorders: Are We There Yet?. Schizophrenia Bulletin, 2014, 40, 960-962.	4.3	24

#	Article	IF	CITATIONS
91	Altered Glycogen Metabolism in Cultured Astrocytes from Mice with Chronic Glutathione Deficit; Relevance for Neuroenergetics in Schizophrenia. PLoS ONE, 2011, 6, e22875.	2.5	22
92	Implication of the glutamate–cystine antiporter xCT in schizophrenia cases linked to impaired GSH synthesis. NPJ Schizophrenia, 2017, 3, 31.	3.6	22
93	High b-value diffusion-weighted imaging: A sensitive method to reveal white matter differences in schizophrenia. Psychiatry Research - Neuroimaging, 2012, 201, 144-151.	1.8	21
94	Timely N-Acetyl-Cysteine and Environmental Enrichment Rescue Oxidative Stress-Induced Parvalbumin Interneuron Impairments via MMP9/RAGE Pathway: A Translational Approach for Early Intervention in Psychosis. Schizophrenia Bulletin, 2021, 47, 1782-1794.	4.3	21
95	Electronic, Steric, and Hydrophobic Factors Influencing the Action of Enkephalin-Like Peptides on Opiate Receptors. Hoppe-Seyler's Zeitschrift Für Physiologische Chemie, 1981, 362, 601-610.	1.6	20
96	SPECIFICITY OF CYSTEINE SULFINATE DECARBOXYLASE (CSD) FOR SULFUR-CONTAINING AMINO-ACIDS * *Part of this work was presented at the last meeting on †Taurine in health and disease' (1993) held in Cologne (Germany) Neurochemistry International, 1996, 28, 363-371.	3.8	19
97	Potential mechanisms of development-dependent adverse effects of the herbicide paraquat in 3D rat brain cell cultures. NeuroToxicology, 2017, 60, 116-124.	3.0	19
98	Stable biomarker identification for predicting schizophrenia in the human connectome. NeuroImage: Clinical, 2020, 27, 102316.	2.7	19
99	Skin fibroblast model to study an impaired glutathione synthesis: Consequences of a genetic polymorphism on the proteome. Brain Research Bulletin, 2009, 79, 46-52.	3.0	18
100	Partialâ€volume modeling reveals reduced gray matter in specific thalamic nuclei early in the time course of psychosis and chronic schizophrenia. Human Brain Mapping, 2020, 41, 4041-4061.	3.6	18
101	Thalamic reticular nucleus impairments and abnormal prefrontal control of dopamine system in a developmental model of schizophrenia: prevention by N-acetylcysteine. Molecular Psychiatry, 2021, 26, 7679-7689.	7.9	18
102	Effects ofl-cysteine-sulphinate andl-aspartate, mixed excitatory amino acid agonists, on the membrane potential of cat caudate neurons. Brain Research, 1987, 414, 330-338.	2.2	17
103	Cytotoxic tetraoxygenated xanthones from the bark of Garcinia schomburgkiana. Phytochemistry Letters, 2012, 5, 553-557.	1.2	16
104	Networks of blood proteins in the neuroimmunology of schizophrenia. Translational Psychiatry, 2018, 8, 112.	4.8	16
105	Homocysteate and homocysteine sulfinate, excitatory transmitter candidates present in rat astroglial cultures. Neuroscience Letters, 1992, 145, 6-9.	2.1	15
106	Social isolation stress and chronic glutathione deficiency have a common effect on the glutamineâ€ŧoâ€glutamate ratio and <i>myo</i> â€ɨnositol concentration in the mouse frontal cortex. Journal of Neurochemistry, 2017, 142, 767-775.	3.9	15
107	Differential effects of (d)- and (l)-homocysteic acid on the membrane potential of cat caudate neurons in situ. Neuroscience, 1989, 31, 213-217.	2.3	14
108	Increased excitatory amino acid levels in brain cysts of epileptic patients. Epilepsy Research, 1997, 28, 245-254.	1.6	14

#	Article	IF	CITATIONS
109	Novel mode of nitric oxide neurotransmission mediated via S-nitroso-cysteinyl-glycine. European Journal of Neuroscience, 2000, 12, 3919-3925.	2.6	14
110	Release of Ethanolamine, but Not of Serine or Choline, in Rat Pontine Nuclei on Stimulation of Afferents from the Cortex, In Vivo. Journal of Neurochemistry, 1986, 46, 1338-1343.	3.9	12
111	9-Fluorenylmethoxycarbonylpyroglutamate, a side-product of derivatization of glutamate with 9-fluorenylmethyl chloroformate: A warning. Analytical Biochemistry, 1987, 166, 431-434.	2.4	12
112	Effect of Climbing Fibre Deprivation on the K+-evoked Release of Endogenous Adenosine from Rat Cerebellar Slices. European Journal of Neuroscience, 1991, 3, 201-208.	2.6	12
113	Release of homocysteic acid from rat thalamus following stimulation of somatosensory afferents in vivo: feasibility of glial participation in synaptic transmission. Neuroscience, 2004, 124, 387-393.	2.3	12
114	Early onset of cannabis use and violent behavior in psychosis. European Psychiatry, 2020, 63, e78.	0.2	12
115	Redox Dysregulation and Oxidative Stress in Schizophrenia: Nutrigenetics as a Challenge in Psychiatric Disease Prevention. World Review of Nutrition and Dietetics, 2010, 101, 131-153.	0.3	11
116	Benefits of adjunctive N-acetylcysteine in a sub-group of clozapine-treated individuals diagnosed with schizophrenia. Psychiatry Research, 2015, 230, 982-983.	3.3	11
117	Nutritional Intervention for Developmental Brain Damage: Effects of Lactoferrin Supplementation in Hypocaloric Induced Intrauterine Growth Restriction Rat Pups. Frontiers in Endocrinology, 2019, 10, 46.	3.5	11
118	Fronto-Temporal Disconnection Within the Presence Hallucination Network in Psychotic Patients With Passivity Experiences. Schizophrenia Bulletin, 2021, 47, 1718-1728.	4.3	11
119	Synthesis and Biological Properties of Enkephalin-like Peptides Containing Adamantylalanine in Position 4 and 5. Helvetica Chimica Acta, 1981, 64, 2084-2089.	1.6	10
120	Mutation screening of the glutamate cysteine ligase modifier (GCLM) gene in patients with schizophrenia. Psychiatric Genetics, 2009, 19, 201-208.	1.1	10
121	Lactate measurement by neurochemical profiling in the dorsolateral prefrontal cortex at 7T: accuracy, precision, and relaxation times. Magnetic Resonance in Medicine, 2020, 83, 1895-1908.	3.0	10
122	Psychological trauma occurring during adolescence is associated with an increased risk of greater waist circumference in Early Psychosis patients treated with psychotropic medication. PLoS ONE, 2020, 15, e0242569.	2.5	10
123	Developmental oxidative stress leads to T-type Ca2+ channel hypofunction in thalamic reticular nucleus of mouse models pertinent to schizophrenia. Molecular Psychiatry, 2022, 27, 2042-2051.	7.9	10
124	Attenuated asymmetry of functional connectivity in schizophrenia: A high-resolution EEG study. Psychophysiology, 2010, 47, 706-16.	2.4	9
125	Interaction of GAG trinucleotide repeat and Câ~'129T polymorphisms impairs expression of the glutamate–cysteine ligase catalytic subunit gene. Free Radical Biology and Medicine, 2011, 50, 617-623.	2.9	9
126	Redox Dysregulation and Oxidative Stress in Schizophrenia: Nutrigenetics as a Challenge in Psychiatric Disease Prevention. Journal of Nutrigenetics and Nutrigenomics, 2010, 3, 267-289.	1.3	8

#	Article	IF	CITATIONS
127	In vivo 31P magnetic resonance spectroscopy study of mouse cerebral NAD content and redox state during neurodevelopment. Scientific Reports, 2020, 10, 15623.	3.3	7
128	Role of Redox Dysregulation in White Matter Anomalies Associated with Schizophrenia. Handbook of Behavioral Neuroscience, 2016, , 481-500.	0.7	6
129	The coupling of low-level auditory dysfunction and oxidative stress in psychosis patients. Schizophrenia Research, 2017, 190, 52-59.	2.0	6
130	Synthesis and Opiate Activityin vitroof Five Newp-Nitrophenylalanine4-Enkephalin-like Peptides. Helvetica Chimica Acta, 1983, 66, 1053-1060.	1.6	5
131	Push-pull cannula for localized application of drugs and sampling of medium, combined with electrophysiological recordings in an interface slice chamber. Journal of Neuroscience Methods, 1992, 43, 35-42.	2.5	5
132	Glutamate Cysteine Ligase—Modulatory Subunit Knockout Mouse Shows Normal Insulin Sensitivity but Reduced Liver Glycogen Storage. Frontiers in Physiology, 2016, 7, 142.	2.8	5
133	White Matter Alterations Between Brain Network Hubs Underlie Processing Speed Impairment in Patients With Schizophrenia. Schizophrenia Bulletin Open, 2021, 2, sgab033.	1.7	5
134	Interaction of p-nitrophenylalanine enkephalins with μ-, Î′- and κ-subtypes of the opiate receptor. European Journal of Pharmacology, 1982, 77, 339-342.	3.5	4
135	Patients participating to neurobiological research in early psychosis: A selected subgroup?. Schizophrenia Research, 2018, 201, 249-253.	2.0	4
136	Topology predicts long-term functional outcome in early psychosis. Molecular Psychiatry, 2020, 26, 5335-5346.	7.9	4
137	Glutathione Deficit and Redox Dysregulation in Animal Models of Schizophrenia. Neuromethods, 2011, , 149-188.	0.3	2
138	N-acetyl-cysteine in a double-blind randomized placebo-controlled trial: Towards biomarker guided treatment in early psychosis. European Psychiatry, 2017, 41, s806-s806.	0.2	2
139	Caught in vicious circles: a perspective on dynamic feed-forward loops driving oxidative stress in schizophrenia; Response to "Adaptive changes to oxidative stress in schizophrenia by Lena Palaniyappan― Molecular Psychiatry, 2022, 27, 3567-3568.	7.9	2
140	REDOX DYSREGULATION AFFECTS PARVALBUMINE INTERNEURON'S INTEGRITY AND NEURAL SYNCHRONISATION IN VENTRAL BUT NOT DORSAL HIPPOCAMPUS. Schizophrenia Research, 2010, 117, 388.	2.0	1
141	T52. N-ACETYL-CYSTEINE ADD-ON TREATMENT LEADS TO AN IMPROVEMENT OF FORNIX WHITE MATTER INTEGRITY IN EARLY PSYCHOSIS. Schizophrenia Bulletin, 2018, 44, S133-S134.	4.3	1
142	Frontal cortical thickness correlates positively with impulsivity in early psychosis male patients. Microbial Biotechnology, 2019, 13, 848-852.	1.7	1
143	FC11.06 A Unified Hypothesis of Schizophrenia Based on Glutathione Deficit. European Psychiatry, 2000, 15, 299s-299s.	0.2	0
144	F152. N-ACETYL-CYSTEINE SUPPLEMENTATION IMPROVES FUNCTIONAL CONNECTIVITY IN THE CINGULATE CORTEX IN EARLY PSYCHOSIS. Schizophrenia Bulletin, 2018, 44, S279-S279.	4.3	0

#	Article	IF	CITATIONS
145	F227. PSYCHOLOGICAL TRAUMA OCCURRING DURING ADOLESCENCE IS ASSOCIATED WITH AN INCREASED RISK OF GREATER WAIST CIRCUMFERENCE IN EARLY PSYCHOSIS PATIENTS INDEPENDENTLY OF MEDICATION. Schizophrenia Bulletin, 2018, 44, S310-S310.	4.3	0
146	S164. "AT-RISK MENTAL STATES―PROGRAM IN LAUSANNE: INFLUENCE OF RECRUITMENT STRATEGIES ON TI RATE OF FALSE POSITIVES. Schizophrenia Bulletin, 2018, 44, S389-S389.	HE 4.3	0
147	T221. Sensorimotor Induction of Auditory Misattribution in Psychosis is Linked to Neural Disconnectivity. Biological Psychiatry, 2018, 83, S214.	1.3	0
148	10.2 REDOX DYSREGULATION, OLIGODENDROCYTES AND WHITE MATTER ALTERATIONS IN SCHIZOPHRENIA. Schizophrenia Bulletin, 2018, 44, S15-S16.	4.3	0
149	3.2 PARVALBUMIN INTERNEURON IMPAIRMENT INDUCED BY OXIDATIVE STRESS AS A COMMON PATHOLOGICAL MECHANISM IN ANIMAL MODELS OF SCHIZOPHRENIA. Schizophrenia Bulletin, 2018, 44, S1-S2.	4.3	0
150	S9. GLUTATHIONE RELATED FACTORS IN TWO BIOTYPES OF SCHIZOPHRENIA. Schizophrenia Bulletin, 2019, 45, S309-S309.	4.3	0
151	S72. FUNCTIONAL DISCONNECTION WITHIN THE PRESENCE HALLUCINATION NETWORK IN PSYCHOTIC PATIENTS WITH FIRST-RANK SYMPTOMS. Schizophrenia Bulletin, 2019, 45, S334-S334.	4.3	0
152	12.4 THE BODILY SELF IN PSYCHOSIS: SENSORIMOTOR INDUCTION OF AUDITORY MISATTRIBUTION IN PSYCHOSIS IS LINKED TO NEURAL DISCONNECTIVITY. Schizophrenia Bulletin, 2019, 45, S107-S108.	4.3	0
153	S69. CLINICAL HIGH RISK STATE: STRATIFICATION BASED ON CLINICAL PROFILE AND REDOX STATUS. Schizophrenia Bulletin, 2020, 46, S60-S60.	4.3	0
154	Oxidative Stress Affects Prefrontal-Basal Ganglia-Thalamo-Cortical Circuits Involved in Selected Attention. Biological Psychiatry, 2020, 87, S32-S33.	1.3	0
155	Redox Dysregulation, Myelination Deficit and Dysconnectivity in Schizophrenia: A Translational Study in First Episode Patients and Experimental Models. Biological Psychiatry, 2020, 87, S100.	1.3	0
156	M16. PROFILING GLUTAMATE AND D-SERINE PATHWAYS IN TREATMENT RESISTANT EARLY PSYCHOSIS PATIENTS. Schizophrenia Bulletin, 2020, 46, S139-S139.	4.3	0
157	Somatosensory-visual effects in visual biological motion perception. PLoS ONE, 2020, 15, e0234026.	2.5	0
158	Redox Dysregulation, Myelination Deficit and Dysconnectivity in Schizophrenia: A Translational Study in First Episode Patients and Experimental Models. Biological Psychiatry, 2021, 89, S56.	1.3	0
159	Somatosensory-visual effects in visual biological motion perception. , 2020, 15, e0234026.		0
160	Somatosensory-visual effects in visual biological motion perception. , 2020, 15, e0234026.		0
161	Somatosensory-visual effects in visual biological motion perception. , 2020, 15, e0234026.		0
162	Somatosensory-visual effects in visual biological motion perception. , 2020, 15, e0234026.		0

Somatosensory-visual effects in visual biological motion perception. , 2020, 15, e0234026. 162

#	Article	IF	CITATIONS
163	Somatosensory-visual effects in visual biological motion perception. , 2020, 15, e0234026.		Ο
164	Somatosensory-visual effects in visual biological motion perception. , 2020, 15, e0234026.		0
165	Somatosensory-visual effects in visual biological motion perception. , 2020, 15, e0234026.		Ο
166	Somatosensory-visual effects in visual biological motion perception. , 2020, 15, e0234026.		0
167	Somatosensory-visual effects in visual biological motion perception. , 2020, 15, e0234026.		Ο
168	Somatosensory-visual effects in visual biological motion perception. , 2020, 15, e0234026.		0