Wim Martinet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8123156/publications.pdf Version: 2024-02-01

Wim Madtinet

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
3	Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy, 2008, 4, 151-175.	9.1	2,064
4	Early Parenteral Nutrition Evokes a Phenotype of Autophagy Deficiency in Liver and Skeletal Muscle of Critically Ill Rabbits. Endocrinology, 2012, 153, 2267-2276.	2.8	672
5	Caspase-3 Deletion Promotes Necrosis in Atherosclerotic Plaques of ApoE Knockout Mice. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-11.	4.0	428
6	Phagocytosis of Apoptotic Cells by Macrophages Is Impaired in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 1256-1261.	2.4	407
7	Elevated Levels of Oxidative DNA Damage and DNA Repair Enzymes in Human Atherosclerotic Plaques. Circulation, 2002, 106, 927-932.	1.6	397
8	Animal models of atherosclerosis. European Journal of Pharmacology, 2017, 816, 3-13.	3.5	385
9	Vascular smooth muscle cell death, autophagy and senescence in atherosclerosis. Cardiovascular Research, 2018, 114, 622-634.	3.8	356
10	Autophagy in Atherosclerosis. Circulation Research, 2009, 104, 304-317.	4.5	333
11	Molecular and cellular mechanisms of skeletal muscle atrophy: an update. Journal of Cachexia, Sarcopenia and Muscle, 2012, 3, 163-179.	7.3	264
12	Autophagy in Vascular Disease. Circulation Research, 2015, 116, 468-479.	4.5	236
13	Apoptotic versus autophagic cell death in heart failure. Cardiovascular Research, 2001, 51, 304-312.	3.8	233
14	Defective autophagy in vascular smooth muscle cells accelerates senescence and promotes neointima formation and atherogenesis. Autophagy, 2015, 11, 2014-2032.	9.1	229
15	Phagocytosis in atherosclerosis: Molecular mechanisms and implications for plaque progression and stability. Cardiovascular Research, 2007, 73, 470-480.	3.8	228
16	Insufficient Activation of Autophagy Allows Cellular Damage to Accumulate in Critically Ill Patients. Journal of Clinical Endocrinology and Metabolism, 2011, 96, E633-E645.	3.6	185
17	Selective Clearance of Macrophages in Atherosclerotic Plaques by Autophagy. Journal of the American College of Cardiology, 2007, 49, 706-715.	2.8	181
18	Oxidative DNA Damage and Repair in Experimental Atherosclerosis Are Reversed by Dietary Lipid Lowering. Circulation Research, 2001, 88, 733-739.	4.5	163

#	Article	IF	CITATIONS
19	Cardiovascular autophagy. Autophagy, 2013, 9, 1455-1466.	9.1	162
20	mTOR inhibition: A promising strategy for stabilization of atherosclerotic plaques. Atherosclerosis, 2014, 233, 601-607.	0.8	162
21	Autophagy in disease: a double-edged sword with therapeutic potential. Clinical Science, 2009, 116, 697-712.	4.3	161
22	Autophagy in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2787-2791.	2.4	160
23	Therapeutic potential of helminth soluble proteins in TNBS-induced colitis in mice. Inflammatory Bowel Diseases, 2009, 15, 491-500.	1.9	152
24	Macrophage Death as a Pharmacological Target in Atherosclerosis. Frontiers in Pharmacology, 2019, 10, 306.	3.5	152
25	Autophagy in the cardiovascular system. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 1485-1495.	4.1	148
26	Neuroglobin and cytoglobin overexpression protects human SH-SY5Y neuroblastoma cells against oxidative stress-induced cell death. Neuroscience Letters, 2006, 410, 146-151.	2.1	145
27	Autophagy in cardiovascular disease. Trends in Molecular Medicine, 2007, 13, 482-491.	6.7	144
28	Elastin fragmentation in atherosclerotic mice leads to intraplaque neovascularization, plaque rupture, myocardial infarction, stroke, and sudden death. European Heart Journal, 2015, 36, 1049-1058.	2.2	139
29	Functional Adiponectin Resistance at the Level of the Skeletal Muscle in Mild to Moderate Chronic Heart Failure. Circulation: Heart Failure, 2010, 3, 185-194.	3.9	134
30	Platelet Phagocytosis and Processing of β-Amyloid Precursor Protein as a Mechanism of Macrophage Activation in Atherosclerosis. Circulation Research, 2002, 90, 1197-1204.	4.5	131
31	In Situ Detection of Starvation-induced Autophagy. Journal of Histochemistry and Cytochemistry, 2006, 54, 85-96.	2.5	125
32	7-Ketocholesterol Induces Protein Ubiquitination, Myelin Figure Formation, and Light Chain 3 Processing in Vascular Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 2296-2301.	2.4	120
33	Defective Autophagy in Atherosclerosis: To Die or to Senesce?. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-12.	4.0	113
34	Reactive oxygen species induce RNA damage in human atherosclerosis. European Journal of Clinical Investigation, 2004, 34, 323-327.	3.4	112
35	Apoptosis in atherosclerosis: focus on oxidized lipids and inflammation. Current Opinion in Lipidology, 2001, 12, 535-541.	2.7	111
36	Anoxia or oxygen and glucose deprivation in SH-SY5Y cells: A step closer to the unraveling of neuroglobin and cytoglobin functions. Gene, 2007, 398, 114-122.	2.2	108

#	Article	IF	CITATIONS
37	Autophagy pathways activated in response to PDT contribute to cell resistance against ROS damage. Journal of Cellular and Molecular Medicine, 2011, 15, 1402-1414.	3.6	106
38	Role of autophagy in heart failure associated with aging. Heart Failure Reviews, 2010, 15, 423-430.	3.9	103
39	Necrotic cell death in atherosclerosis. Basic Research in Cardiology, 2011, 106, 749-760.	5.9	101
40	Potential therapeutic effects of mTOR inhibition in atherosclerosis. British Journal of Clinical Pharmacology, 2016, 82, 1267-1279.	2.4	94
41	Autophagy in atherosclerosis. Current Atherosclerosis Reports, 2008, 10, 216-223.	4.8	89
42	Role of autophagy in the pathophysiology of nonalcoholic fatty liver disease: A controversial issue. World Journal of Gastroenterology, 2014, 20, 7325.	3.3	88
43	Everolimus-Induced mTOR Inhibition Selectively Depletes Macrophages in Atherosclerotic Plaques by Autophagy. Autophagy, 2007, 3, 241-244.	9.1	85
44	Impaired Fibrillin-1 Function Promotes Features of Plaque Instability in Apolipoprotein E–Deficient Mice. Circulation, 2009, 120, 2478-2487.	1.6	81
45	mTOR Inhibition and Cardiovascular Diseases. Transplantation, 2018, 102, S44-S46.	1.0	80
46	Interactions between cell death induced by statins and 7â€ketocholesterol in rabbit aorta smooth muscle cells. British Journal of Pharmacology, 2008, 154, 1236-1246.	5.4	77
47	Dipeptidyl peptidases in atherosclerosis: expression and role in macrophage differentiation, activation and apoptosis. Basic Research in Cardiology, 2013, 108, 350.	5.9	71
48	Protection of Mice Against a Lethal Influenza Challenge by Immunization with Yeast-Derived Recombinant Influenza Neuraminidase. FEBS Journal, 1997, 247, 332-338.	0.2	70
49	Gene Expression Profiling of Apoptosis-Related Genes in Human Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 2023-2029.	2.4	69
50	Immunohistochemical analysis of macroautophagy. Autophagy, 2013, 9, 386-402.	9.1	67
51	Clearance of dying autophagic cells of different origin by professional and non-professional phagocytes. Cell Death and Differentiation, 2007, 14, 1117-1128.	11.2	66
52	Pharmacological modulation of cell death in atherosclerosis: a promising approach towards plaque stabilization?. British Journal of Pharmacology, 2011, 164, 1-13.	5.4	64
53	Spermidine reduces lipid accumulation and necrotic core formation inÂatherosclerotic plaques via induction of autophagy. Atherosclerosis, 2016, 251, 319-327.	0.8	62
54	Detection of Autophagy in Tissue by Standard Immunohistochemistry: Possibilities and Limitations. Autophagy, 2006, 2, 55-57.	9.1	61

#	Article	IF	CITATIONS
55	ATG4B inhibitors with a benzotropolone core structure block autophagy and augment efficiency of chemotherapy in mice. Biochemical Pharmacology, 2017, 138, 150-162.	4.4	61
56	Selective Depletion of Macrophages in Atherosclerotic Plaques via Macrophage-Specific Initiation of Cell Death. Trends in Cardiovascular Medicine, 2007, 17, 69-75.	4.9	59
57	Molecular cloning and enzymatic characterization of a Trichoderma reesei 1,2-α-d-mannosidase. Journal of Biotechnology, 2000, 77, 255-263.	3.8	54
58	Toll-like receptor 7 stimulation by imiquimod induces macrophage autophagy and inflammation in atherosclerotic plaques. Basic Research in Cardiology, 2012, 107, 269.	5.9	54
59	Amino Acid Deprivation Induces Both Apoptosis and Autophagy in Murine C2C12 Muscle Cells. Biotechnology Letters, 2005, 27, 1157-1163.	2.2	53
60	Methods to Assess Autophagy In Situ—Transmission Electron Microscopy Versus Immunohistochemistry. Methods in Enzymology, 2014, 543, 89-114.	1.0	53
61	The Protein Synthesis Inhibitor Anisomycin Induces Macrophage Apoptosis in Rabbit Atherosclerotic Plaques through p38 Mitogen-Activated Protein Kinase. Journal of Pharmacology and Experimental Therapeutics, 2009, 329, 856-864.	2.5	52
62	Protection of mice against a lethal influenza virus challenge after immunization with yeast-derived secreted influenza virus hemagglutinin. FEBS Journal, 1999, 260, 166-175.	0.2	50
63	Defective autophagy in vascular smooth muscle cells alters contractility and Ca ²⁺ homeostasis in mice. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H557-H567.	3.2	50
64	Nucleofection as an efficient nonviral transfection method for human monocytic cells. Biotechnology Letters, 2003, 25, 1025-1029.	2.2	49
65	Drug-induced macrophage autophagy in atherosclerosis: for better or worse?. Basic Research in Cardiology, 2013, 108, 321.	5.9	46
66	Altered mitochondrial quality control in Atg7-deficient VSMCs promotes enhanced apoptosis and is linked to unstable atherosclerotic plaque phenotype. Cell Death and Disease, 2019, 10, 119.	6.3	46
67	Dissecting out the Complex Ca2+-Mediated Phenylephrine-Induced Contractions of Mouse Aortic Segments. PLoS ONE, 2015, 10, e0121634.	2.5	43
68	Selective Clearance of Macrophages in Atherosclerotic Plaques by the Protein Synthesis Inhibitor Cycloheximide. Journal of Pharmacology and Experimental Therapeutics, 2007, 320, 986-993.	2.5	42
69	TRPV1 receptor signaling mediates afferent nerve sensitization during colitis-induced motility disorders in rats. American Journal of Physiology - Renal Physiology, 2008, 294, G245-G253.	3.4	42
70	Chronic intermittent mental stress promotes atherosclerotic plaque vulnerability, myocardial infarction and sudden death in mice. Atherosclerosis, 2015, 242, 288-294.	0.8	42
71	Pharmacological strategies to inhibit intra-plaque angiogenesis in atherosclerosis. Vascular Pharmacology, 2019, 112, 72-78.	2.1	39
72	Flow cytometric evaluation of a model for phagocytosis of cells undergoing apoptosis. Journal of Immunological Methods, 2004, 287, 101-108.	1.4	37

#	Article	IF	CITATIONS
73	Hepatocellular autophagy modulates the unfolded protein response and fasting-induced steatosis in mice. American Journal of Physiology - Renal Physiology, 2016, 311, G599-G609.	3.4	37
74	A novel setâ€up for the <i>ex vivo</i> analysis of mechanical properties of mouse aortic segments stretched at physiological pressure and frequency. Journal of Physiology, 2016, 594, 6105-6115.	2.9	36
75	Western array analysis of human atherosclerotic plaques: downregulation of apoptosis-linked gene 2. Cardiovascular Research, 2003, 60, 259-267.	3.8	35
76	mRNA but not plasmid DNA is efficiently transfected in murine J774A.1 macrophages. Biochemical and Biophysical Research Communications, 2005, 327, 356-360.	2.1	34
77	Overexpression of the Anti-Apoptotic Caspase-2 Short Isoform in Macrophage-Derived Foam Cells of Human Atherosclerotic Plaques. American Journal of Pathology, 2003, 162, 731-736.	3.8	33
78	Western blot analysis of a limited number of cells: a valuable adjunct to proteome analysis of paraffin wax-embedded, alcohol-fixed tissue after laser capture microdissection. Journal of Pathology, 2004, 202, 382-388.	4.5	33
79	Immunohistostaining Assays for Detection of Chlamydia pneumoniae in Atherosclerotic Arteries Indicate Cross-Reactions with Nonchlamydial Plaque Constituents. Journal of Clinical Microbiology, 2004, 42, 3219-3224.	3.9	32
80	Inhibition of inositol monophosphatase by lithium chloride induces selective macrophage apoptosis in atherosclerotic plaques. British Journal of Pharmacology, 2011, 162, 1410-1423.	5.4	32
81	Differential Effect of the Protein Synthesis Inhibitors Puromycin and Cycloheximide on Vascular Smooth Muscle Cell Viability. Journal of Pharmacology and Experimental Therapeutics, 2008, 325, 824-832.	2.5	31
82	Contribution of transient and sustained calcium influx, and sensitization to depolarization-induced contractions of the intact mouse aorta. BMC Physiology, 2012, 12, 9.	3.6	31
83	Molecular and cellular mechanisms of macrophage survival in atherosclerosis. Basic Research in Cardiology, 2012, 107, 297.	5.9	31
84	Cholesterol-independent effects of atorvastatin prevent cardiovascular morbidity and mortality in a mouse model of atherosclerotic plaque rupture. Vascular Pharmacology, 2016, 80, 50-58.	2.1	31
85	Basal ryanodine receptor activity suppresses autophagic flux. Biochemical Pharmacology, 2017, 132, 133-142.	4.4	31
86	z-VAD-fmk-Induced Non-Apoptotic Cell Death of Macrophages: Possibilities and Limitations for Atherosclerotic Plaque Stabilization. Autophagy, 2006, 2, 312-314.	9.1	30
87	Partial Inhibition of Glycolysis Reduces Atherogenesis Independent of Intraplaque Neovascularization in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 1168-1181.	2.4	30
88	MET15 as a visual selection marker forCandida albicans. Yeast, 2000, 16, 1205-1215.	1.7	29
89	Intraplaque neovascularization as a novel therapeutic target in advanced atherosclerosis. Expert Opinion on Therapeutic Targets, 2016, 20, 1247-1257.	3.4	29
90	Multi-slice computed tomography with N1177 identifies ruptured atherosclerotic plaques in rabbits. Basic Research in Cardiology, 2010, 105, 51-59.	5.9	28

#	Article	IF	CITATIONS
91	Proteasome inhibitor bortezomib promotes a rupture-prone plaque phenotype in ApoE-deficient mice. Basic Research in Cardiology, 2010, 105, 39-50.	5.9	28
92	The Role of Autophagy in Critical Illness-induced Liver Damage. Scientific Reports, 2017, 7, 14150.	3.3	28
93	RNA Damage in Human Atherosclerosis: Pathophysiological Significance and Implications for Gene Expression Studies. RNA Biology, 2005, 2, 4-7.	3.1	27
94	Phagocytosis of bacteria is enhanced in macrophages undergoing nutrient deprivation. FEBS Journal, 2009, 276, 2227-2240.	4.7	27
95	Nitric Oxide Donor Molsidomine Favors Features of Atherosclerotic Plaque Stability During Cholesterol Lowering in Rabbits. Journal of Cardiovascular Pharmacology, 2003, 41, 970-978.	1.9	26
96	Everolimus Triggers Cytokine Release by Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 1228-1235.	2.4	26
97	Effect of Non-Steroidal Anti-Inflammatory Drugs on Amyloid-β Formation and Macrophage Activation after Platelet Phagocytosis. Journal of Cardiovascular Pharmacology, 2004, 43, 462-470.	1.9	24
98	Transcription Profiles of Aortic Smooth Muscle Cells from Atherosclerosis-Prone and -Resistant Regions in Young Apolipoprotein E-Deficient Mice before Plaque Development. Journal of Vascular Research, 2011, 48, 31-42.	1.4	24
99	Everolimus depletes plaque macrophages, abolishes intraplaque neovascularization and improves survival in mice with advanced atherosclerosis. Vascular Pharmacology, 2019, 113, 70-76.	2.1	24
100	Macrophages but Not Smooth Muscle Cells Undergo Benzyloxycarbonyl-Val-Ala-dl-Asp(O-Methyl)-Fluoromethylketone-Induced Nonapoptotic Cell Death Depending on Receptor-Interacting Protein 1 Expression: Implications for the Stabilization of Macrophage-Rich Atherosclerotic Plaques. Journal of Pharmacology and Experimental Therapeutics,	2.5	23
101	2006, 317, 1356-1364. Transglutaminase 2 Deficiency Decreases Plaque Fibrosis and Increases Plaque Inflammation in Apolipoprotein-E-Deficient Mice. Journal of Vascular Research, 2010, 47, 231-240.	1.4	23
102	Attenuated atherogenesis in apolipoprotein E-deficient mice lacking amyloid precursor protein. Atherosclerosis, 2011, 216, 54-58.	0.8	23
103	Therapeutic strategies to deplete macrophages in atherosclerotic plaques. British Journal of Clinical Pharmacology, 2012, 74, 246-263.	2.4	23
104	Continuous administration of the mTORC1 inhibitor everolimus induces tolerance and decreases autophagy in mice. British Journal of Pharmacology, 2016, 173, 3359-3371.	5.4	23
105	Novel drug discovery strategies for atherosclerosis that target necrosis and necroptosis. Expert Opinion on Drug Discovery, 2018, 13, 477-488.	5.0	23
106	Selective loss of basal but not receptor-stimulated relaxation by endothelial nitric oxide synthase after isolation of the mouse aorta. European Journal of Pharmacology, 2012, 696, 111-119.	3.5	22
107	Standard Immunohistochemical Assays to Assess Autophagy in Mammalian Tissue. Cells, 2017, 6, 17.	4.1	22
108	Dipeptidyl peptidase II and leukocyte cell death. Biochemical Pharmacology, 2006, 72, 70-79.	4.4	21

#	Article	IF	CITATIONS
109	Axitinib attenuates intraplaque angiogenesis, haemorrhages and plaque destabilization in mice. Vascular Pharmacology, 2018, 100, 34-40.	2.1	21
110	Small molecule 3PO inhibits glycolysis but does not bind to 6â€phosphofructoâ€2â€kinase/fructoseâ€2,6â€bisphosphataseâ€3 (PFKFB3). FEBS Letters, 2020, 594, 3067-30	75 ^{2.8}	20
111	Gasdermin D Deficiency Limits the Transition of Atherosclerotic Plaques to an Inflammatory Phenotype in ApoE Knock-Out Mice. Biomedicines, 2022, 10, 1171.	3.2	20
112	Nitric oxide selectively depletes macrophages in atherosclerotic plaques via induction of endoplasmic reticulum stress. British Journal of Pharmacology, 2007, 152, 493-500.	5.4	19
113	Death and Survival Signals in Photodynamic Therapy. Methods in Molecular Biology, 2010, 635, 7-33.	0.9	19
114	Inhibitor screening and enzymatic activity determination for autophagy target Atg4B using a gel electrophoresis-based assay. European Journal of Medicinal Chemistry, 2016, 123, 631-638.	5.5	19
115	Bax-induced cell death in Pichia pastoris. Biotechnology Letters, 1999, 21, 821-829.	2.2	17
116	Mitochondrial uncoupling protein 2 mediates temperature heterogeneity in atherosclerotic plaques. Cardiovascular Research, 2007, 77, 425-431.	3.8	17
117	Effect of Statins on the Viability of Macrophages and Smooth Muscle Cells. Journal of Cardiovascular Pharmacology, 2010, 55, 269-275.	1.9	17
118	NecroX-7 reduces necrotic core formation in atherosclerotic plaques of Apoe knockout mice. Atherosclerosis, 2016, 252, 166-174.	0.8	17
119	Characterization of the role of N-glycosylation sites in the respiratory syncytial virus fusion protein in virus replication, syncytium formation and antigenicity. Virus Research, 2019, 266, 58-68.	2.2	17
120	Modification of the protein glycosylation pathway in the methylotrophic yeast Pichia pastoris. Biotechnology Letters, 1998, 20, 1171-1177.	2.2	16
121	Inflammation, Nitro-Oxidative Stress, Impaired Autophagy, and Insulin Resistance as a Mechanistic Convergence Between Arterial Stiffness and Alzheimer's Disease. Frontiers in Molecular Biosciences, 2021, 8, 651215.	3.5	16
122	L-type Ca2+ channel blockers inhibit the window contraction of mouse aorta segments with high affinity. European Journal of Pharmacology, 2014, 738, 170-178.	3.5	15
123	Impaired gait pattern as a sensitive tool to assess hypoxic brain damage in a novel mouse model of atherosclerotic plaque rupture. Physiology and Behavior, 2015, 139, 397-402.	2.1	15
124	Defective autophagy in vascular smooth muscle cells increases passive stiffness of the mouse aortic vessel wall. Pflugers Archiv European Journal of Physiology, 2020, 472, 1031-1040.	2.8	15
125	Doxorubicin induces arterial stiffness: A comprehensive in vivo and ex vivo evaluation of vascular toxicity in mice. Toxicology Letters, 2021, 346, 23-33.	0.8	15
126	Selective Depletion of Macrophages in Atherosclerotic Plaques. Circulation Research, 2007, 100, 751-753.	4.5	14

#	Article	IF	CITATIONS
127	The cytosolic sialidase Neu2 is degraded by autophagy during myoblast atrophy. Biochimica Et Biophysica Acta - General Subjects, 2009, 1790, 817-828.	2.4	14
128	Comparative EPR study of different macrophage types stimulated for superoxide and nitric oxide production. Free Radical Research, 2010, 44, 763-772.	3.3	14
129	Fibrillin-1 impairment enhances blood–brain barrier permeability and xanthoma formation in brains of apolipoprotein E-deficient mice. Neuroscience, 2015, 295, 11-22.	2.3	14
130	Nitric oxide donor molsidomine favors features of atherosclerotic plaque stability and reduces myocardial infarction in mice. Vascular Pharmacology, 2019, 118-119, 106561.	2.1	14
131	Autophagy as an emerging therapeutic target for age-related vascular pathologies. Expert Opinion on Therapeutic Targets, 2020, 24, 131-145.	3.4	14
132	The PFKFB3 Inhibitor AZ67 Inhibits Angiogenesis Independently of Glycolysis Inhibition. International Journal of Molecular Sciences, 2021, 22, 5970.	4.1	14
133	Postconditioning effects of argon or xenon on early graft function in a porcine model of kidney autotransplantation. British Journal of Surgery, 2018, 105, 1051-1060.	0.3	13
134	Doxorubicin Impairs Smooth Muscle Cell Contraction: Novel Insights in Vascular Toxicity. International Journal of Molecular Sciences, 2021, 22, 12812.	4.1	13
135	Removal of the N-Glycosylation Sequon at Position N116 Located in p27 of the Respiratory Syncytial Virus Fusion Protein Elicits Enhanced Antibody Responses after DNA Immunization. Viruses, 2018, 10, 426.	3.3	12
136	Selective Removal of Macrophages in Atherosclerotic Plaques as a Pharmacological Approach for Plaque Stabilization: Benefits Vs. Potential Complications. Current Vascular Pharmacology, 2010, 8, 495-508.	1.7	12
137	Progressive aortic stiffness in aging C57Bl/6 mice displays altered contractile behaviour and extracellular matrix changes. Communications Biology, 2022, 5, .	4.4	12
138	Exercise capacity in chronic heart failure patients is related to active gene transcription in skeletal muscle and not apoptosis. European Journal of Cardiovascular Prevention and Rehabilitation, 2009, 16, 325-332.	2.8	11
139	Serum Corticosterone and Insulin Resistance as Early Biomarkers in the hAPP23 Overexpressing Mouse Model of Alzheimer's Disease. International Journal of Molecular Sciences, 2021, 22, 6656.	4.1	11
140	PFKFB3 gene deletion in endothelial cells inhibits intraplaque angiogenesis and lesion formation in a murine model of venous bypass grafting. Angiogenesis, 2022, 25, 129-143.	7.2	11
141	The enzymatic activity of sialidase Neu2 is inversely regulated during in vitro myoblast hypertrophy and atrophy. Biochemical and Biophysical Research Communications, 2008, 370, 376-381.	2.1	10
142	Transcript and Protein Analysis Reveals Better Survival Skills of Monocyte-Derived Dendritic Cells Compared to Monocytes during Oxidative Stress. PLoS ONE, 2012, 7, e43357.	2.5	10
143	Cytoprotective effects of transgenic neuroglobin overexpression in an acute and chronic mouse model of ischemic heart disease. Heart and Vessels, 2018, 33, 80-88.	1.2	10
144	Synthesis and evaluation of novel benzotropolones as Atg4B inhibiting autophagy blockers. Bioorganic Chemistry, 2019, 87, 163-168.	4.1	10

#	Article	IF	CITATIONS
145	Autophagy Dynamics and Modulation in a Rat Model of Renal Ischemia-Reperfusion Injury. International Journal of Molecular Sciences, 2020, 21, 7185.	4.1	10
146	Impact of myeloid RIPK1 gene deletion on atherogenesis in ApoE-deficient mice. Atherosclerosis, 2021, 322, 51-60.	0.8	10
147	Cell Death–Mediated Cleavage of the Attraction Signal p43 in Human Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1415-1422.	2.4	8
148	Predictive tissue biomarkers for bevacizumab-containing therapy in metastatic colorectal cancer: an update. Expert Review of Molecular Diagnostics, 2015, 15, 399-414.	3.1	8
149	Contribution of α-Adrenoceptor Stimulation by Phenylephrine to Basal Nitric Oxide Production in the Isolated Mouse Aorta. Journal of Cardiovascular Pharmacology, 2013, 61, 318-323.	1.9	7
150	Autophagy in Non-Alcoholic Fatty Liver Disease (NAFLD). , 0, , .		7
151	The Protective Effects of the Autophagic and Lysosomal Machinery in Vascular and Valvular Calcification: A Systematic Review. International Journal of Molecular Sciences, 2020, 21, 8933.	4.1	7
152	Coupling Additive Manufacturing with Hot Melt Extrusion Technologies to Validate a Ventilator-Associated Pneumonia Mouse Model. Pharmaceutics, 2021, 13, 772.	4.5	7
153	High Pulsatile Load Decreases Arterial Stiffness: An ex vivo Study. Frontiers in Physiology, 2021, 12, 741346.	2.8	7
154	Bone matrix vesicle-bound alkaline phosphatase for the assessment of peripheral blood admixture to human bone marrow aspirates. Clinica Chimica Acta, 2015, 446, 253-260.	1.1	6
155	Patient Perceptions of Electronic Prescriptions in Belgium: An Exploratory Policy Analysis. Pharmacy (Basel, Switzerland), 2018, 6, 130.	1.6	6
156	Three-Dimensional Imaging of Intraplaque Neovascularization in a Mouse Model of Advanced Atherosclerosis. Journal of Vascular Research, 2020, 57, 348-354.	1.4	6
157	Defective Autophagy in Vascular Smooth Muscle Cells Alters Vascular Reactivity of the Mouse Femoral Artery. Frontiers in Physiology, 2020, 11, 548943.	2.8	5
158	ATG4B Inhibitor UAMC-2526 Potentiates the Chemotherapeutic Effect of Gemcitabine in a Panc02 Mouse Model of Pancreatic Ductal Adenocarcinoma. Frontiers in Oncology, 2021, 11, 750259.	2.8	5
159	Upregulation and Formation of SDS-Resistant Oligomers of the Proapoptotic Factor Bax in Experimental Atherosclerosis. Annals of the New York Academy of Sciences, 2003, 1010, 738-741.	3.8	4
160	Plasmatic Villin 1 Is a Novel In Vivo Marker of Proximal Tubular Cell Injury During Renal Ischemia-Reperfusion. Transplantation, 2017, 101, e330-e336.	1.0	4
161	INSPIRE: A European training network to foster research and training in cardiovascular safety pharmacology. Journal of Pharmacological and Toxicological Methods, 2020, 105, 106889.	0.7	4
162	Comparison of apoptosis detection markers combined with macrophage immunostaining to study phagocytosis of apoptotic cells in situ. Biomarker Insights, 2007, 1, 193-200.	2.5	4

#	Article	IF	CITATIONS
163	The Impact of RIPK1 Kinase Inhibition on Atherogenesis: A Genetic and a Pharmacological Approach. Biomedicines, 2022, 10, 1016.	3.2	4
164	Basal Vascular Smooth Muscle Cell Tone in eNOS Knockout Mice Can Be Reversed by Cyclic Stretch and Is Independent of Age. Frontiers in Physiology, 2022, 13, 882527.	2.8	4
165	Evaluation of recombinant A/Victoria/3/75 (H3N2) influenza neuraminidase mutants as potential broad-spectrum subunit vaccines against influenza A. Archives of Virology, 1998, 143, 2011-2019.	2.1	3
166	Uncoupling protein 2-mediated thermogenesis in vulnerable atherosclerotic plaques. EuroIntervention, 2007, 3, 275-279.	3.2	3
167	Cryotherapy increases features of plaque stability in atherosclerotic rabbits. EuroIntervention, 2016, 12, 748-756.	3.2	3
168	Mouse aortic biomechanics are affected by short-term defective autophagy in vascular smooth muscle cells. Journal of Physiological Sciences, 2022, 72, 7.	2.1	3
169	Aortic Stiffness in L-NAME Treated C57Bl/6 Mice Displays a Shift From Early Endothelial Dysfunction to Late-Term Vascular Smooth Muscle Cell Dysfunction. Frontiers in Physiology, 0, 13, .	2.8	3
170	Western Array Analysis of Human Atherosclerotic Plaques. , 2007, 357, 165-178.		2
171	Development of atherosclerotic plaques in a mouse model of pseudoxanthoma elasticum. Acta Cardiologica, 2014, 69, 687-692.	0.9	2
172	Autophagy in Atherosclerosis. , 2016, , 249-264.		2
173	Angiotensin II increases coronary fibrosis, cardiac hypertrophy and the incidence of myocardial infarctions in ApoE ^{-/-} Fbn1 ^{C1039G+/-} mice. Acta Cardiologica, 2016, 71, 483-488.	0.9	2
174	Optimization and characterization of a murine lung infection model for the evaluation of novel therapeutics against Burkholderia cenocepacia. Journal of Microbiological Methods, 2017, 139, 181-188.	1.6	2
175	Inhibition of VEGF receptor signaling attenuates intraplaque angiogenesis and plaque destabilization in a mouse model of advanced atherosclerosis. Atherosclerosis, 2017, 263, e33-e34.	0.8	2
176	Defective autophagy in vascular smooth muscle cells promotes an unstable atherosclerotic plaque phenotype and increased expression of mitophagy markers in Apo E-/- mice. Atherosclerosis, 2017, 263, e5.	0.8	2
177	Acetylsalicylic Acid Reduces Passive Aortic Wall Stiffness and Cardiovascular Remodelling in a Mouse Model of Advanced Atherosclerosis. International Journal of Molecular Sciences, 2022, 23, 404.	4.1	2
178	Angiotensin II increases coronary fibrosis, cardiac hypertrophy and the incidence of myocardial infarctions in ApoE ^{-/-} Fbn1 ^{C1039G+/-} mice. Acta Cardiologica, 2016, 71, 483-8.	0.9	2
179	Comparison of Apoptosis Detection Markers Combined with Macrophage Immunostaining to Study Phagocytosis of Apoptotic Cells in Situ. Biomarker Insights, 2006, 1, 117727190600100.	2.5	1
180	Apoptosis Does Not Mediate Macrophage Depletion in Rabbit Atherosclerotic Plaques after Dietary Lipid Lowering. Annals of the New York Academy of Sciences, 2009, 1171, 365-371.	3.8	1

#	Article	IF	CITATIONS
181	Everolimus attenuates atherosclerotic plaque progression, intraplaque neovascularization, myocardial infarction and sudden death in a mouse model of advanced atherosclerosis. Atherosclerosis, 2017, 263, e59.	0.8	1
182	Inhibition of glycolysis reduces intraplaque angiogenesis in a mouse model of advanced atherosclerosis. Atherosclerosis, 2017, 263, e23.	0.8	1
183	Cytosolic prostaglandin E2 synthase/p23 but not apoptosis-linked gene 2 is downregulated in human atherosclerotic plaques. Cardiovascular Research, 2004, 61, 360-361.	3.8	0
184	Abstract no.: 3 Impaired clearance of apoptotic cells in atherosclerosis. Fundamental and Clinical Pharmacology, 2005, 19, 401-401.	1.9	0
185	Abstract no.: 10 DNA fragmentation, but not caspase-3 activation or PARP-1 cleavage, combined with macrophage immunostaining as a tool to study phagocytosis of apoptotic cells in situ. Fundamental and Clinical Pharmacology, 2006, 20, 333-333.	1.9	0
186	Cyanide and uncoupling protein function: reply. Cardiovascular Research, 2008, 78, 198-198.	3.8	0
187	A novel plaque rupture model in mice. Vascular Pharmacology, 2012, 56, 313.	2.1	0
188	The Role of Autophagy in Atherosclerosis. , 2014, , 79-90.		0
189	Effect of mental stress on atherosclerotic plaque vulnerability, myocardial infarction and survival in mice. Atherosclerosis, 2014, 235, e116-e117.	0.8	0
190	Autophagy in the vasculature. , 2022, , 257-268.		0
191	Transcriptional activity of skeletal muscle in chronic heart failure patients: relationship with functional exercise parameters. European Journal of Cardiovascular Prevention and Rehabilitation, 2006, 13, S9.	2.8	Ο
192	681 Apoptosis versus active gene transcription in the skeletal muscle of patients with mild to moderate chronic heart failure. Relationship with exercise capacity. European Journal of Heart Failure, Supplement, 2007, 6, 149-149.	0.0	0
193	Phagocytosis of Dying Cells in the Pathogenesis of Atherosclerosis. , 2009, , 371-392.		0
194	Aging-Related Changes in Cell Death and Cell Survival Pathways and Implications for Heart Failure Therapy. , 2014, , 339-349.		0
195	Food Restriction and Atherosclerotic Plaque Stabilization. , 0, , .		Ο