Mina Ohadi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8122722/publications.pdf

Version: 2024-02-01

430874 477307 1,160 66 18 29 h-index citations g-index papers 82 82 82 1259 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Predominant monomorphism of the RIT2 and GPM6B exceptionally long GA blocks in human and enriched divergent alleles in the disease compartment. Genetica, 2022, 150, 27-40.	1.1	8
2	Proposed minimal essential co-expression and physical interaction networks involved in the development of cognition impairment in human mid and late life. Neurological Sciences, 2021, 42, 951-959.	1.9	1
3	Natural selection at the RASGEF1C (GGC) repeat in human and divergent genotypes in late-onset neurocognitive disorder. Scientific Reports, 2021, 11, 19235.	3.3	14
4	Novel implications of a strictly monomorphic (GCC) repeat in the human PRKACB gene. Scientific Reports, $2021,11,20629.$	3.3	13
5	Natural Selection at the NHLH2 Core Promoter Exceptionally Long CA-Repeat in Human and Disease-Only Genotypes in Late-Onset Neurocognitive Disorder. Gerontology, 2020, 66, 514-522.	2.8	12
6	Evolving evidence on a link between the ZMYM3 exceptionally long GA-STR and human cognition. Scientific Reports, 2020, 10, 19454.	3.3	12
7	Genome-wide prediction and prioritization of human aging genes by data fusion: a machine learning approach. BMC Genomics, 2019, 20, 832.	2.8	10
8	Disease-only alleles at the extreme ends of the human ZMYM3 exceptionally long 5′ UTR short tandem repeat in bipolar disorder: A pilot study. Journal of Affective Disorders, 2019, 251, 86-90.	4.1	9
9	Skewing of the genetic architecture at the ZMYM3 human-specific $5\hat{a} \in ^2$ UTR short tandem repeat in schizophrenia. Molecular Genetics and Genomics, 2018, 293, 747-752.	2.1	9
10	Genome-scale portrait and evolutionary significance of human-specific core promoter tri- and tetranucleotide short tandem repeats. Human Genomics, 2018, 12, 17.	2.9	6
11	Association of glutathione S-transferases <i>M1, P1</i> and <i>T1</i> variations and risk of late-onset Alzheimer's disease. Neurological Research, 2018, 40, 41-44.	1.3	10
12	Link between short tandem repeats and translation initiation site selection. Human Genomics, $2018, 12, 47.$	2.9	19
13	RIT2 Polymorphisms: Is There a Differential Association?. Molecular Neurobiology, 2017, 54, 2234-2240.	4.0	31
14	The human RIT2 core promoter short tandem repeat predominant allele is species-specific in length: a selective advantage for human evolution?. Molecular Genetics and Genomics, 2017, 292, 611-617.	2.1	18
15	Association of \hat{I}^2 -Secretase Functional Polymorphism with Risk of Schizophrenia. Genetic Testing and Molecular Biomarkers, 2017, 21, 248-251.	0.7	3
16	SOCS gene family expression profile in the blood of multiple sclerosis patients. Journal of the Neurological Sciences, 2017, 375, 481-485.	0.6	22
17	Support for "Disease-Only―Genotypes and Excess of Homozygosity at the CYTH4 Primate-Specific GTTT-Repeat in Schizophrenia. Genetic Testing and Molecular Biomarkers, 2017, 21, 485-490.	0.7	15
18	A genetic variant in miRNA binding site of glutamate receptor 4, metabotropic (GRM4) is associated with increased risk of major depressive disorder. Journal of Affective Disorders, 2017, 208, 218-222.	4.1	25

#	Article	IF	CITATIONS
19	Editorial: Could Speciation Across Evolution be Governed by Genetic Switch Codes at Short Tandem Repeats?. Iranian Rehabilitation Journal, 2017, 15, 3-4.	0.3	0
20	Genome-wide identification of human- and primate-specific core promoter short tandem repeats. Gene, 2016, 587, 83-90.	2.2	12
21	BEND3 is involved in the human-specific repression of calreticulin: Implication for the evolution of higher brain functions in human. Gene, 2016, 576, 577-580.	2.2	9
22	Decreased gene expression activity as a result of a mutation in the calreticulin gene promoter in a family case of schizoaffective disorder. Cognitive Neurodynamics, 2016, 10, 269-274.	4.0	3
23	A genetic variant in CAMKK2 gene is possibly associated with increased risk of bipolar disorder. Journal of Neural Transmission, 2016, 123, 323-328.	2.8	13
24	An exceptionally long CA-repeat in the core promoter of SCGB2B2 links with the evolution of apes and Old World monkeys. Gene, 2016, 576, 109-114.	2.2	23
25	Overexpression of the MUC1 Gene in Iranian Women with Breast Cancer Micrometastasis. Asian Pacific Journal of Cancer Prevention, 2016, 17, 275-278.	1.2	5
26	Association between Interleukin 16 Gene Polymorphisms (rs1131445, rs4072111) and Late Onset of Alzheimer's Disease in Iranian Patients. Salmand: Iranian Journal of Ageing, 2016, 11, 64-71.	0.5	0
27	Core promoter short tandem repeats as evolutionary switch codes for primate speciation. American Journal of Primatology, 2015, 77, 34-43.	1.7	36
28	Exceptionally long 5′ UTR short tandem repeats specifically linked to primates. Gene, 2015, 569, 88-94.	2.2	23
29	Dominant and Protective Role of the CYTH4 Primate-Specific GTTT-Repeat Longer Alleles Against Neurodegeneration. Journal of Molecular Neuroscience, 2015, 56, 593-596.	2.3	13
30	Association between polymorphisms in Interleukin-16 gene and risk of late-onset Alzheimer's disease. Journal of the Neurological Sciences, 2015, 358, 324-327.	0.6	13
31	A primate-specific functional GTTT-repeat in the core promoter of CYTH4 is linked to bipolar disorder in human. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2015, 56, 161-167.	4.8	22
32	Exceptional expansion and conservation of a CTâ€repeat complex in the core promoter of <i>PAXBP1</i> in primates. American Journal of Primatology, 2014, 76, 747-756.	1.7	36
33	Biased Homozygous Haplotypes Across the Human Caveolin 1 Upstream Purine Complex in Parkinson's Disease. Journal of Molecular Neuroscience, 2013, 51, 389-393.	2.3	18
34	Calreticulin novel mutations in type 2 diabetes mellitus. International Journal of Diabetes in Developing Countries, 2013, 33, 219-225.	0.8	6
35	Polymorphic core promoter GA-repeats alter gene expression of the early embryonic developmental genes. Gene, 2013, 531, 175-179.	2.2	30
36	Vitamin D Receptor (VDR) Polymorphisms and Late-Onset Alzheimer's Disease: An Association Study. Iranian Journal of Public Health, 2013, 42, 1253-8.	0.5	8

#	Article	IF	CITATIONS
37	Aberrant expression of Activating Transcription Factor 6 (ATF6) in major psychiatric disorders. Psychiatry Research, 2012, 200, 1086-1087.	3.3	3
38	Novel evidence of the involvement of calreticulin in major psychiatric disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2012, 37, 276-281.	4.8	16
39	Core promoter STRs: Novel mechanism for inter-individual variation in gene expression in humans. Gene, 2012, 492, 195-198.	2.2	25
40	Haplotypes across the human caveolin 1 gene upstream purine complex significantly alter gene expression: Implication in neurodegenerative disorders. Gene, 2012, 505, 186-189.	2.2	3
41	Evolutionary trend of exceptionally long human core promoter short tandem repeats. Gene, 2012, 507, 61-67.	2.2	29
42	Ccr2-64i and Ccr5 Δ32 Polymorphisms in Patients with Late-Onset Alzheimer's disease; A Study from Iran (Ccr2-64i And Ccr5 Δ32 Polymorphisms in Alzheimer's disease). Iranian Journal of Basic Medical Sciences, 2012, 15, 937-44.	1.0	15
43	Possible involvement of the calreticulin gene in the evolution of cognition in humans. European Psychiatry, 2011, 26, 810-810.	0.2	0
44	Exceptional human core promoter nucleotide compositions. Gene, 2011, 475, 79-86.	2.2	19
45	Reversion of the human calreticulin gene promoter to the ancestral type as a result of a novel psychosis-associated mutation. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2011, 35, 541-544.	4.8	18
46	Support for down-tuning of the calreticulin gene in the process of human evolution. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2011, 35, 1770-1773.	4.8	15
47	The human caveolin 1 gene upstream purine complex and neurodegeneration—A common signature. Journal of Neuroimmunology, 2011, 236, 106-110.	2.3	7
48	The Association between Sporadic Alzheimer's Disease and the Human ABCA1 and APOE Gene Polymorphisms in Iranian Population. Iranian Red Crescent Medical Journal, 2011, 13, 256-62.	0.5	6
49	Novel extreme homozygote haplotypes at the human caveolin 1 gene upstream purine complex in sporadic Alzheimer's disease. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 347-349.	1.7	11
50	Novel mutations in the calreticulin gene core promoter and coding sequence in schizoaffective disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 706-709.	1.7	10
51	Association between Alzheimer's Disease and Apolipoprotein E Polymorphisms. Iranian Journal of Public Health, 2010, 39, 1-6.	0.5	54
52	Association of CALHM1 Gene Polymorphism with Late Onset Alzheimer's Disease in Iranian Population. Avicenna Journal of Medical Biotechnology, 2010, 2, 153-7.	0.3	6
53	Skew in the human caveolin 1 gene upstream purine complex homozygote haplotype compartment in multiple sclerosis. Journal of Neuroimmunology, 2009, 216, 103-107.	2.3	10
54	A novel polymorphic purine complex at the 1.5 kb upstream region of the human caveolinâ€1 gene and risk of Alzheimer's disease; Extraâ€short alleles and accumulated allele homozygosity. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2009, 150B, 248-253.	1.7	16

#	Article	IF	CITATIONS
55	New Variations in the Promoter Regions of Human DOCK4 and RAP1A Genes, and Coding Regions of RAP1A in Sporadic Breast Tumors. Avicenna Journal of Medical Biotechnology, 2009, 1, 117-23.	0.3	2
56	Lack of Association between Tumor Necrosis Factor-alpha -308 G/A Polymorphism and Risk of Developing Late-Onset Alzheimer's Disease in an Iranian Population. Avicenna Journal of Medical Biotechnology, 2009, 1, 193-7.	0.3	6
57	No association between the DAT1 10-repeat allele and ADHD in the Iranian population. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2008, 147B, 110-111.	1.7	11
58	A mutation in the calreticulin gene promoter in a family case of schizoaffective disorder leads to its aberrant transcriptional activation. Brain Research, 2008, 1239, 36-41.	2.2	9
59	Mutation analysis of the DBC2 gene in sporadic and familial breast cancer. Acta Oncol \tilde{A}^3 gica, 2007, 46, 770-772.	1.8	13
60	Gender dimorphism in the DAT1 \hat{a} 67 T-allele homozygosity and predisposition to bipolar disorder. Brain Research, 2007, 1144, 142-145.	2.2	17
61	Attention-deficit/hyperactivity disorder (ADHD) association with the DAT1 core promoter â^67 T allele. Brain Research, 2006, 1101, 1-4.	2.2	20
62	A point mutation at the calreticulin gene core promoter conserved sequence in a case of schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2006, 141B, 294-295.	1.7	18
63	Association between the DRD2 A1 allele and opium addiction in the Iranian population. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2005, 134B, 39-41.	1.7	32
64	Association analysis of the dopamine transporter (DAT1)-67A/T polymorphism in bipolar disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2005, 135B, 47-49.	1.7	31
65	Association of the dopamine transporter gene (DAT1) core promoter polymorphism ?67T variant with schizophrenia. American Journal of Medical Genetics Part A, 2004, 129B, 10-12.	2.4	32
66	Localization of a Gene for Familial Hemophagocytic Lymphohistiocytosis at Chromosome 9q21.3-22 by Homozygosity Mapping. American Journal of Human Genetics, 1999, 64, 165-171.	6.2	199