Bert van den Berg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8122643/publications.pdf

Version: 2024-02-01

40 papers

3,544 citations

201674 27 h-index 289244 40 g-index

43 all docs 43 docs citations

times ranked

43

3831 citing authors

#	Article	IF	CITATIONS
1	A comprehensive structural analysis of the ATPase domain of human DNA topoisomerase II beta bound to AMPPNP, ADP, and the bisdioxopiperazine, ICRF193. Structure, 2022, 30, 1129-1145.e3.	3.3	6
2	Insights into SusCD-mediated glycan import by a prominent gut symbiont. Nature Communications, 2021, 12, 44.	12.8	42
3	Structural Basis for Silicic Acid Uptake by Higher Plants. Journal of Molecular Biology, 2021, 433, 167226.	4.2	18
4	Acquisition of ionic copper by the bacterial outer membrane protein OprC through a novel binding site. PLoS Biology, 2021, 19, e3001446.	5.6	14
5	Porins and small-molecule translocation across the outer membrane of Gram-negative bacteria. Nature Reviews Microbiology, 2020, 18, 164-176.	28.6	225
6	Chitoporin from <i>Serratia marcescens</i> : recombinant expression, purification and crystallization. Acta Crystallographica Section F, Structural Biology Communications, 2020, 76, 536-543.	0.8	3
7	Uptake of monoaromatic hydrocarbons during biodegradation by FadL channel-mediated lateral diffusion. Nature Communications, 2020, $11,6331$.	12.8	10
8	Structural and functional insights into oligopeptide acquisition by the RagAB transporter from Porphyromonas gingivalis. Nature Microbiology, 2020, 5, 1016-1025.	13.3	46
9	Ammonium transceptors: Novel regulators of fungal development. PLoS Pathogens, 2019, 15, e1008059.	4.7	12
10	Modeling of Specific Lipopolysaccharide Binding Sites on a Gram-Negative Porin. Journal of Physical Chemistry B, 2019, 123, 5700-5708.	2.6	11
11	A Multidisciplinary Approach toward Identification of Antibiotic Scaffolds for Acinetobacter baumannii. Structure, 2019, 27, 268-280.e6.	3.3	41
12	Unusual Constriction Zones in the Major Porins OmpU and OmpT from Vibrio cholerae. Structure, 2018, 26, 708-721.e4.	3.3	22
13	Structure and function of a novel periplasmic chitooligosaccharide-binding protein from marine Vibrio bacteria. Journal of Biological Chemistry, 2018, 293, 5150-5159.	3.4	12
14	Structural basis for chitin acquisition by marine Vibrio species. Nature Communications, 2018, 9, 220.	12.8	37
15	TonB-dependent transport by the gut microbiota: novel aspects of an old problem. Current Opinion in Structural Biology, 2018, 51, 35-43.	5.7	49
16	Crystal structure of the <i> Acinetobacter baumannii </i> Crystallographica Section D: Structural Biology, 2018, 74, 852-860.	2.3	8
17	Getting Drugs into Gram-Negative Bacteria: Rational Rules for Permeation through General Porins. ACS Infectious Diseases, 2018, 4, 1487-1498.	3.8	117
18	Getting Drugs through Small Pores: Exploiting the Porins Pathway in <i>Pseudomonas aeruginosa</i> ACS Infectious Diseases, 2018, 4, 1519-1528.	3.8	25

#	Article	IF	Citations
19	Structural basis for nutrient acquisition by dominant members of the human gut microbiota. Nature, 2017, 541, 407-411.	27.8	188
20	Structural basis for maintenance of bacterial outer membrane lipid asymmetry. Nature Microbiology, 2017, 2, 1616-1623.	13.3	118
21	Gram-negative trimeric porins have specific LPS binding sites that are essential for porin biogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5034-43.	7.1	103
22	Structural basis for Mep2 ammonium transceptor activation by phosphorylation. Nature Communications, 2016, 7, 11337.	12.8	52
23	Structural Insights into Outer Membrane Permeability of Acinetobacter baumannii. Structure, 2016, 24, 221-231.	3.3	49
24	Role of Electroosmosis in the Permeation of Neutral Molecules: CymA and Cyclodextrin as an Example. Biophysical Journal, 2016, 110, 600-611.	0.5	55
25	Crystal structure of a COG4313 outer membrane channel. Scientific Reports, 2015, 5, 11927.	3.3	19
26	Outer-membrane translocation of bulky small molecules by passive diffusion. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2991-9.	7.1	70
27	Small-Molecule Transport by CarO, an Abundant Eight-Stranded β-Barrel Outer Membrane Protein from Acinetobacter baumannii. Journal of Molecular Biology, 2015, 427, 2329-2339.	4.2	54
28	Structure, Dynamics, and Substrate Specificity of the OprO Porin from Pseudomonas aeruginosa. Biophysical Journal, 2015, 109, 1429-1438.	0.5	39
29	Lateral gates: Î ² -barrels get in on the act. Nature Structural and Molecular Biology, 2013, 20, 1237-1239.	8.2	11
30	Structural Basis for Outer Membrane Sugar Uptake in Pseudomonads. Journal of Biological Chemistry, 2012, 287, 41044-41052.	3.4	39
31	Crystal Structure of Escherichia coli CusC, the Outer Membrane Component of a Heavy Metal Efflux Pump. PLoS ONE, 2011, 6, e15610.	2.5	91
32	Ligand-gated diffusion across the bacterial outer membrane. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10121-10126.	7.1	66
33	Going Forward Laterally: Transmembrane Passage of Hydrophobic Molecules through Protein Channel Walls. ChemBioChem, 2010, 11, 1339-1343.	2.6	51
34	Crystal Structure of a Full-Length Autotransporter. Journal of Molecular Biology, 2010, 396, 627-633.	4.2	140
35	The Crystal Structure of OprG from Pseudomonas aeruginosa, a Potential Channel for Transport of Hydrophobic Molecules across the Outer Membrane. PLoS ONE, 2010, 5, e15016.	2.5	56
36	Transmembrane passage of hydrophobic compounds through a protein channel wall. Nature, 2009, 458, 367-370.	27.8	134

#	Article	IF	CITATIONS
37	Outer-membrane transport of aromatic hydrocarbons as a first step in biodegradation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8601-8606.	7.1	85
38	The FadL family: unusual transporters for unusual substrates. Current Opinion in Structural Biology, 2005, 15, 401-407.	5.7	92
39	Crystal Structure of the Long-Chain Fatty Acid Transporter FadL. Science, 2004, 304, 1506-1509.	12.6	200
40	X-ray structure of a protein-conducting channel. Nature, 2004, 427, 36-44.	27.8	1,134