
Bert van den Berg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8122643/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	X-ray structure of a protein-conducting channel. Nature, 2004, 427, 36-44.	27.8	1,134
2	Porins and small-molecule translocation across the outer membrane of Gram-negative bacteria. Nature Reviews Microbiology, 2020, 18, 164-176.	28.6	225
3	Crystal Structure of the Long-Chain Fatty Acid Transporter FadL. Science, 2004, 304, 1506-1509.	12.6	200
4	Structural basis for nutrient acquisition by dominant members of the human gut microbiota. Nature, 2017, 541, 407-411.	27.8	188
5	Crystal Structure of a Full-Length Autotransporter. Journal of Molecular Biology, 2010, 396, 627-633.	4.2	140
6	Transmembrane passage of hydrophobic compounds through a protein channel wall. Nature, 2009, 458, 367-370.	27.8	134
7	Structural basis for maintenance of bacterial outer membrane lipid asymmetry. Nature Microbiology, 2017, 2, 1616-1623.	13.3	118
8	Getting Drugs into Gram-Negative Bacteria: Rational Rules for Permeation through General Porins. ACS Infectious Diseases, 2018, 4, 1487-1498.	3.8	117
9	Gram-negative trimeric porins have specific LPS binding sites that are essential for porin biogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5034-43.	7.1	103
10	The FadL family: unusual transporters for unusual substrates. Current Opinion in Structural Biology, 2005, 15, 401-407.	5.7	92
11	Crystal Structure of Escherichia coli CusC, the Outer Membrane Component of a Heavy Metal Efflux Pump. PLoS ONE, 2011, 6, e15610.	2.5	91
12	Outer-membrane transport of aromatic hydrocarbons as a first step in biodegradation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8601-8606.	7.1	85
13	Outer-membrane translocation of bulky small molecules by passive diffusion. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2991-9.	7.1	70
14	Ligand-gated diffusion across the bacterial outer membrane. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10121-10126.	7.1	66
15	The Crystal Structure of OprG from Pseudomonas aeruginosa, a Potential Channel for Transport of Hydrophobic Molecules across the Outer Membrane. PLoS ONE, 2010, 5, e15016.	2.5	56
16	Role of Electroosmosis in the Permeation of Neutral Molecules: CymA and Cyclodextrin as an Example. Biophysical Journal, 2016, 110, 600-611.	0.5	55
17	Small-Molecule Transport by CarO, an Abundant Eight-Stranded β-Barrel Outer Membrane Protein from Acinetobacter baumannii. Journal of Molecular Biology, 2015, 427, 2329-2339.	4.2	54
18	Structural basis for Mep2 ammonium transceptor activation by phosphorylation. Nature Communications, 2016, 7, 11337.	12.8	52

Bert van den Berg

#	Article	IF	CITATIONS
19	Going Forward Laterally: Transmembrane Passage of Hydrophobic Molecules through Protein Channel Walls. ChemBioChem, 2010, 11, 1339-1343.	2.6	51
20	Structural Insights into Outer Membrane Permeability of Acinetobacter baumannii. Structure, 2016, 24, 221-231.	3.3	49
21	TonB-dependent transport by the gut microbiota: novel aspects of an old problem. Current Opinion in Structural Biology, 2018, 51, 35-43.	5.7	49
22	Structural and functional insights into oligopeptide acquisition by the RagAB transporter from Porphyromonas gingivalis. Nature Microbiology, 2020, 5, 1016-1025.	13.3	46
23	Insights into SusCD-mediated glycan import by a prominent gut symbiont. Nature Communications, 2021, 12, 44.	12.8	42
24	A Multidisciplinary Approach toward Identification of Antibiotic Scaffolds for Acinetobacter baumannii. Structure, 2019, 27, 268-280.e6.	3.3	41
25	Structural Basis for Outer Membrane Sugar Uptake in Pseudomonads. Journal of Biological Chemistry, 2012, 287, 41044-41052.	3.4	39
26	Structure, Dynamics, and Substrate Specificity of the OprO Porin from Pseudomonas aeruginosa. Biophysical Journal, 2015, 109, 1429-1438.	0.5	39
27	Structural basis for chitin acquisition by marine Vibrio species. Nature Communications, 2018, 9, 220.	12.8	37
28	Getting Drugs through Small Pores: Exploiting the Porins Pathway in <i>Pseudomonas aeruginosa</i> . ACS Infectious Diseases, 2018, 4, 1519-1528.	3.8	25
29	Unusual Constriction Zones in the Major Porins OmpU and OmpT from Vibrio cholerae. Structure, 2018, 26, 708-721.e4.	3.3	22
30	Crystal structure of a COG4313 outer membrane channel. Scientific Reports, 2015, 5, 11927.	3.3	19
31	Structural Basis for Silicic Acid Uptake by Higher Plants. Journal of Molecular Biology, 2021, 433, 167226.	4.2	18
32	Acquisition of ionic copper by the bacterial outer membrane protein OprC through a novel binding site. PLoS Biology, 2021, 19, e3001446.	5.6	14
33	Structure and function of a novel periplasmic chitooligosaccharide-binding protein from marine Vibrio bacteria. Journal of Biological Chemistry, 2018, 293, 5150-5159.	3.4	12
34	Ammonium transceptors: Novel regulators of fungal development. PLoS Pathogens, 2019, 15, e1008059.	4.7	12
35	Lateral gates: β-barrels get in on the act. Nature Structural and Molecular Biology, 2013, 20, 1237-1239.	8.2	11
36	Modeling of Specific Lipopolysaccharide Binding Sites on a Gram-Negative Porin. Journal of Physical Chemistry B, 2019, 123, 5700-5708.	2.6	11

#	Article	IF	CITATIONS
37	Uptake of monoaromatic hydrocarbons during biodegradation by FadL channel-mediated lateral diffusion. Nature Communications, 2020, 11, 6331.	12.8	10
38	Crystal structure of the <i>Acinetobacter baumannii</i> outer membrane protein Omp33. Acta Crystallographica Section D: Structural Biology, 2018, 74, 852-860.	2.3	8
39	A comprehensive structural analysis of the ATPase domain of human DNA topoisomerase II beta bound to AMPPNP, ADP, and the bisdioxopiperazine, ICRF193. Structure, 2022, 30, 1129-1145.e3.	3.3	6
40	Chitoporin from <i>Serratia marcescens</i> : recombinant expression, purification and crystallization. Acta Crystallographica Section F, Structural Biology Communications, 2020, 76, 536-543.	0.8	3