Suksun Horpibulsuk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8122154/publications.pdf

Version: 2024-02-01

334 papers 15,809 citations

69 h-index 25787 108 g-index

336 all docs

336 docs citations

times ranked

336

6401 citing authors

#	Article	IF	CITATIONS
1	Analysis of strength development in cement-stabilized silty clay from microstructural considerations. Construction and Building Materials, 2010, 24, 2011-2021.	7.2	462
2	Assessment of strength development in cement-admixed high water content clays with Abrams' law as a basis. Geotechnique, 2003, 53, 439-444.	4.0	305
3	Strength development in clay–fly ash geopolymer. Construction and Building Materials, 2013, 40, 566-574.	7.2	300
4	Engineering Behavior of Cement Stabilized Clay at High Water Content. Soils and Foundations, 2001, 41, 33-45.	3.1	298
5	Recycling waste rubber tyres in construction materials and associated environmental considerations: A review. Resources, Conservation and Recycling, 2020, 155, 104679.	10.8	294
6	Practical recycling applications of crushed waste glass in construction materials: A review. Construction and Building Materials, 2017, 156, 443-467.	7.2	279
7	Strength development in soft marine clay stabilized by fly ash and calcium carbide residue based geopolymer. Applied Clay Science, 2016, 127-128, 134-142.	5. 2	236
8	Soil Stabilization by Calcium Carbide Residue and Fly Ash. Journal of Materials in Civil Engineering, 2012, 24, 184-193.	2.9	225
9	Physical properties and shear strength responses of recycled construction and demolition materials in unbound pavement base/subbase applications. Construction and Building Materials, 2014, 58, 245-257.	7.2	218
10	High calcium fly ash geopolymer stabilized lateritic soil and granulated blast furnace slag blends as a pavement base material. Journal of Hazardous Materials, 2018, 341, 257-267.	12.4	215
11	Improvement of Problematic Soils with Biopolymer—An Environmentally Friendly Soil Stabilizer. Journal of Materials in Civil Engineering, 2017, 29, .	2.9	207
12	Clay–Waterâ^•Cement Ratio Identity for Cement Admixed Soft Clays. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2005, 131, 187-192.	3.0	200
13	Assessment of strength development in blended cement admixed Bangkok clay. Construction and Building Materials, 2011, 25, 1521-1531.	7.2	199
14	Role of Fly Ash on Strength and Microstructure Development in Blended Cement Stabilized Silty Clay. Soils and Foundations, 2009, 49, 85-98.	3.1	190
15	Strength development in silty clay stabilized with calcium carbide residue and fly ash. Soils and Foundations, 2013, 53, 477-486.	3.1	190
16	Undrained Shear Behavior of Cement Admixed Clay at High Water Content. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2004, 130, 1096-1105.	3.0	184
17	Calcium carbide residue: Alkaline activator for clay–fly ash geopolymer. Construction and Building Materials, 2014, 69, 285-294.	7.2	183
18	Factors influencing strength development in clay–fly ash geopolymer. Construction and Building Materials, 2013, 47, 1125-1136.	7.2	169

#	Article	IF	Citations
19	Jet grouting with a newly developed technology: The Twin-Jet method. Engineering Geology, 2013, 152, 87-95.	6.3	167
20	Nanoparticles in Construction Materials and Other Applications, and Implications of Nanoparticle Use. Materials, 2019, 12, 3052.	2.9	161
21	Compressive strength development in fly ash geopolymer masonry units manufactured from water treatment sludge. Construction and Building Materials, 2015, 82, 20-30.	7.2	159
22	Behaviour of cemented clay simulated via the theoretical framework of the Structured Cam Clay model. Computers and Geotechnics, 2010, 37, 1-9.	4.7	157
23	Strength development of Recycled Asphalt Pavement $\hat{a}\in$ Fly ash geopolymer as a road construction material. Construction and Building Materials, 2016, 117, 209-219.	7. 2	151
24	Modified Structured Cam Clay: A generalised critical state model for destructured, naturally structured and artificially structured clays. Computers and Geotechnics, 2010, 37, 956-968.	4.7	150
25	Flexural beam fatigue strength evaluation of crushed brick as a supplementary material in cement stabilized recycled concrete aggregates. Construction and Building Materials, 2014, 68, 667-676.	7.2	150
26	Stabilization of Recycled Demolition Aggregates by Geopolymers comprising Calcium Carbide Residue, Fly Ash and Slag precursors. Construction and Building Materials, 2016, 114, 864-873.	7.2	148
27	Stabilisation of marginal lateritic soil using high calcium fly ash-based geopolymer. Road Materials and Pavement Design, 2016, 17, 877-891.	4.0	144
28	Effect of wetting $\hat{\epsilon}$ drying cycles on compressive strength and microstructure of recycled asphalt pavement $\hat{\epsilon}$ Fly ash geopolymer. Construction and Building Materials, 2017, 144, 624-634.	7.2	142
29	Strength behavior and microstructural characteristics of soft clay stabilized with cement kiln dust and fly ash residue. Applied Clay Science, 2017, 141, 146-156.	5.2	135
30	Compressibility and permeability of Bangkok clay compared with kaolinite and bentonite. Applied Clay Science, 2011, 52, 150-159.	5.2	134
31	Influence of Wet-Dry Cycles on Compressive Strength of Calcium Carbide Residue–Fly Ash Stabilized Clay. Journal of Materials in Civil Engineering, 2014, 26, 633-643.	2.9	131
32	Assessment of engineering properties of Bangkok clay. Canadian Geotechnical Journal, 2007, 44, 173-187.	2.8	130
33	A field trial of horizontal jet grouting using the composite-pipe method in the soft deposits of Shanghai. Tunnelling and Underground Space Technology, 2013, 35, 142-151.	6.2	129
34	Compressibility of cement-admixed clays at high water content. Geotechnique, 2004, 54, 151-154.	4.0	125
35	Strength development in blended cement admixed saline clay. Applied Clay Science, 2012, 55, 44-52.	5.2	125
36	Strength Development in Cement Stabilized Low Plasticity and Coarse Grained Soils: Laboratory and Field Study. Soils and Foundations, 2006, 46, 351-366.	3.1	124

#	Article	IF	Citations
37	Multi-scale laboratory evaluation of the physical, mechanical, and microstructural properties of soft highway subgrade soil stabilized with calcium carbide residue. Canadian Geotechnical Journal, 2016, 53, 373-383.	2.8	124
38	A review of studies on bricks using alternative materials and approaches. Construction and Building Materials, 2018, 188, 1101-1118.	7.2	119
39	A sustainable calcined water treatment sludge and rice husk ash geopolymer. Journal of Cleaner Production, 2016, 119, 128-134.	9.3	116
40	Engineering Properties of Silty Clay Stabilized with Calcium Carbide Residue. Journal of Materials in Civil Engineering, 2013, 25, 632-644.	2.9	108
41	Sulfate Resistance of Clay-Portland Cement and Clay High-Calcium Fly Ash Geopolymer. Journal of Materials in Civil Engineering, 2015, 27, .	2.9	106
42	Evaluation of fly ash- and slag-based geopolymers for the improvement of a soft marine clay by deep soil mixing. Soils and Foundations, 2018, 58, 1358-1370.	3.1	106
43	Field evaluation of soft highway subgrade soil stabilized with calcium carbide residue. Soils and Foundations, 2016, 56, 301-314.	3.1	103
44	Evaluation of the Strength Increase of Marine Clay under Staged Embankment Loading: A Case Study. Marine Georesources and Geotechnology, 2015, 33, 532-541.	2.1	101
45	Recycled asphalt pavement – fly ash geopolymers as a sustainable pavement base material: Strength and toxic leaching investigations. Science of the Total Environment, 2016, 573, 19-26.	8.0	101
46	Effects of industrial by-product based geopolymers on the strength development of a soft soil. Soils and Foundations, 2018, 58, 716-728.	3.1	100
47	Modulus of rupture evaluation of cement stabilized recycled glass/recycled concrete aggregate blends. Construction and Building Materials, 2015, 84, 146-155.	7.2	99
48	Strength and microstructure evaluation of recycled glass-fly ash geopolymer as low-carbon masonry units. Construction and Building Materials, 2016, 114, 400-406.	7.2	95
49	Stabilization of soft clay using short fibers and poly vinyl alcohol. Geotextiles and Geomembranes, 2018, 46, 646-655.	4.6	95
50	A critical state model for overconsolidated structured clays. Computers and Geotechnics, 2011, 38, 648-658.	4.7	91
51	Micro-structural analysis of strength development in low- and high swelling clays stabilized with magnesium chloride solution $\hat{a} \in \mathcal{C}^n$ A green soil stabilizer. Applied Clay Science, 2015, 118, 195-206.	5.2	91
52	Recycled plastic granules and demolition wastes as construction materials: Resilient moduli and strength characteristics. Construction and Building Materials, 2017, 147, 639-647.	7.2	91
53	Xanthan gum biopolymer: an eco-friendly additive for stabilization of tropical organic peat. Environmental Earth Sciences, 2016, 75, 1.	2.7	90
54	Recycling waste materials in geopolymer concrete. Clean Technologies and Environmental Policy, 2019, 21, 493-515.	4.1	89

#	Article	IF	CITATIONS
55	Strengthening montmorillonitic and kaolinitic clays using a calcium-based non-traditional additive: A micro-level study. Applied Clay Science, 2016, 132-133, 182-193.	5.2	88
56	Marginal Lateritic Soil Stabilized with Calcium Carbide Residue and Fly Ash Geopolymers as a Sustainable Pavement Base Material. Journal of Materials in Civil Engineering, 2017, 29, .	2.9	88
57	Strength assessment of spent coffee grounds-geopolymer cement utilizing slag and fly ash precursors. Construction and Building Materials, 2016, 115, 565-575.	7.2	86
58	Amazing Types, Properties, and Applications of Fibres in Construction Materials. Materials, 2019, 12, 2513.	2.9	86
59	Strength evaluation of utilizing recycled plastic waste and recycled crushed glass in concrete footpaths. Construction and Building Materials, 2019, 197, 489-496.	7.2	86
60	Consolidation behavior of soil–cement column improved ground. Computers and Geotechnics, 2012, 43, 37-50.	4.7	85
61	Engineering properties of recycled Calcium Carbide Residue stabilized clay as fill and pavement materials. Construction and Building Materials, 2013, 46, 203-210.	7.2	85
62	Modelling the cutoff behavior of underground structure in multi-aquifer-aquitard groundwater system. Natural Hazards, 2013, 66, 731-748.	3.4	84
63	Strength and microstructure properties of spent coffee grounds stabilized with rice husk ash and slag geopolymers. Construction and Building Materials, 2017, 146, 312-320.	7.2	82
64	Effect of fly ash on properties of crushed brick and reclaimed asphalt in pavement base/subbase applications. Journal of Hazardous Materials, 2017, 321, 547-556.	12.4	81
65	Engineering and environmental properties of foamed recycled glass as a lightweight engineering material. Journal of Cleaner Production, 2015, 94, 369-375.	9.3	80
66	Durability against Wetting–Drying Cycles of Water Treatment Sludge–Fly Ash Geopolymer and Water Treatment Sludge–Cement and Silty Clay–Cement Systems. Journal of Materials in Civil Engineering, 2016, 28, .	2.9	80
67	Cement kiln dust and fly ash blends as an alternative binder for the stabilization of demolition aggregates. Construction and Building Materials, 2017, 145, 218-225.	7.2	79
68	Three-dimensional numerical investigation on lateral movement and factor of safety of slopes stabilized with deep cement mixing column rows. Engineering Geology, 2015, 188, 159-167.	6.3	78
69	Environmental impacts of utilizing waste steel slag aggregates as recycled road construction materials. Clean Technologies and Environmental Policy, 2017, 19, 949-958.	4.1	7 5
70	Strength and compressibility of lightweight cemented clays. Applied Clay Science, 2012, 69, 11-21.	5.2	74
71	Unit weight, strength and microstructure of a water treatment sludge–fly ash lightweight cellular geopolymer. Construction and Building Materials, 2015, 94, 807-816.	7.2	70
72	Impact of field conditions on the strength development of a geopolymer stabilized marine clay. Applied Clay Science, 2019, 167, 33-42.	5.2	70

#	Article	IF	CITATIONS
73	Spent coffee grounds as a non-structural embankment fill material: engineering and environmental considerations. Journal of Cleaner Production, 2014, 72, 181-186.	9.3	69
74	An Approach for Assessment of Compaction Curves of Fine Grained Soils at Various Energies Using a One Point Test. Soils and Foundations, 2008, 48, 115-125.	3.1	68
75	Durability against wetting–drying cycles of sustainable Lightweight Cellular Cemented construction material comprising clay and fly ash wastes. Construction and Building Materials, 2015, 77, 41-49.	7.2	68
76	Consolidation analysis of clayey deposits under vacuum pressure with horizontal drains. Geotextiles and Geomembranes, 2014, 42, 437-444.	4.6	67
77	Recent massive incidents for subway construction in soft alluvial deposits of Taiwan: A review. Tunnelling and Underground Space Technology, 2020, 96, 103178.	6.2	67
78	Pullout Resistance of Bearing Reinforcement Embedded in Sand. Soils and Foundations, 2010, 50, 215-226.	3.1	66
79	Strength of sustainable non-bearing masonry units manufactured from calcium carbide residue and fly ash. Construction and Building Materials, 2014, 71, 210-215.	7.2	66
80	Recycled-Glass Blends in Pavement Base/Subbase Applications: Laboratory and Field Evaluation. Journal of Materials in Civil Engineering, 2014, 26, .	2.9	64
81	Spent Coffee Grounds–Fly Ash Geopolymer Used as an Embankment Structural Fill Material. Journal of Materials in Civil Engineering, 2016, 28, .	2.9	63
82	Recycled waste foundry sand as a sustainable subgrade fill and pipe-bedding construction material: Engineering and environmental evaluation. Sustainable Cities and Society, 2017, 28, 343-349.	10.4	62
83	Practical approach to predict the shear strength of fibre-reinforced clay. Geosynthetics International, 2018, 25, 50-66.	2.9	62
84	Identifying parameters of advanced soil models using an enhanced transitional Markov chain Monte Carlo method. Acta Geotechnica, 2019, 14, 1925-1947.	5.7	62
85	Utilizing recycled PET blends with demolition wastes as construction materials. Construction and Building Materials, 2019, 221, 200-209.	7.2	62
86	Compressive strength and microstructural properties of spent coffee grounds-bagasse ash based geopolymers with slag supplements. Journal of Cleaner Production, 2017, 162, 1491-1501.	9.3	60
87	Recycled glass as a supplementary filler material in spent coffee grounds geopolymers. Construction and Building Materials, 2017, 151, 18-27.	7.2	59
88	Pullout resistance of bearing reinforcement embedded in coarse-grained soils. Geotextiles and Geomembranes, 2013, 36, 44-54.	4.6	58
89	Field performance of concrete pipes during jacking in cemented sandy silt. Tunnelling and Underground Space Technology, 2015, 49, 336-344.	6.2	56
90	Analysis of the behavior of DOT tunnel lining caused by rolling correction operation. Tunnelling and Underground Space Technology, 2009, 24, 84-90.	6.2	54

#	Article	IF	Citations
91	Compressive and Flexural Strength of Polyvinyl Alcohol–Modified Pavement Concrete Using Recycled Concrete Aggregates. Journal of Materials in Civil Engineering, 2018, 30, .	2.9	54
92	Estimation of the compression behaviour of reconstituted clays. Engineering Geology, 2013, 167, 84-94.	6.3	53
93	Palm oil fuel ash-soft soil geopolymer for subgrade applications: strength and microstructural evaluation. Road Materials and Pavement Design, 2019, 20, 110-131.	4.0	53
94	Effect of fine content on the pullout resistance mechanism of bearing reinforcement embedded in cohesive–frictional soils. Geotextiles and Geomembranes, 2015, 43, 107-117.	4.6	52
95	Sustainable Improvement of Clays Using Low-Carbon Nontraditional Additive. International Journal of Geomechanics, 2018, 18, .	2.7	52
96	Strength and Microstructural Study of Recycled Asphalt Pavement: Slag Geopolymer as a Pavement Base Material. Journal of Materials in Civil Engineering, 2018, 30, .	2.9	52
97	Flexural Strength Characteristics of Compacted Cement-Polypropylene Fiber Sand. Journal of Materials in Civil Engineering, 2015, 27, .	2.9	51
98	Mineralogy and geotechnical properties of Singapore marine clay at Changi. Soils and Foundations, 2015, 55, 600-613.	3.1	51
99	Influence of class F fly ash and curing temperature on strength development of fly ash-recycled concrete aggregate blends. Construction and Building Materials, 2016, 127, 743-750.	7.2	51
100	Analysis of strength development in deep mixing: a field study. Proceedings of the Institution of Civil Engineers: Ground Improvement, 2004, 8, 59-68.	1.0	49
101	Shear strength of a fibre-reinforced clay at large shear displacement when subjected to different stress histories. Geotextiles and Geomembranes, 2017, 45, 422-429.	4.6	48
102	Modeling compression behavior of cement-treated zinc-contaminated clayey soils. Soils and Foundations, 2014, 54, 1018-1026.	3.1	47
103	Numerical analysis of lateral movements and strut forces in deep cement mixing walls with top-down construction in soft clay. Computers and Geotechnics, 2017, 88, 174-181.	4.7	46
104	Stiffness and deformation properties of spent coffee grounds based geopolymers. Construction and Building Materials, 2017, 138, 79-87.	7.2	46
105	Alkali-activation of fly ash and cement kiln dust mixtures for stabilization of demolition aggregates. Construction and Building Materials, 2018, 186, 71-78.	7.2	46
106	Development of genetic-based models for predicting the resilient modulus of cohesive pavement subgrade soils. Soils and Foundations, 2020, 60, 398-412.	3.1	46
107	Enhancing behavior of large volume underground concrete structure using expansive agents. Construction and Building Materials, 2016, 114, 49-55.	7.2	45
108	Laboratory Evaluation of Ladle Furnace Slag in Unbound Pavement-Base/Subbase Applications. Journal of Materials in Civil Engineering, 2017, 29, .	2.9	45

#	Article	IF	Citations
109	Effect of lime kiln dust as an alternative binder in the stabilization of construction and demolition materials. Construction and Building Materials, 2017, 152, 999-1007.	7.2	44
110	Optimum model for bearing capacity of concrete-steel columns with AI technology via incorporating the algorithms of IWO and ABC. Engineering With Computers, 2021, 37, 797-807.	6.1	43
111	Sustainable Improvement of Marine Clay Using Recycled Blended Tiles. Geotechnical and Geological Engineering, 2018, 36, 3135-3147.	1.7	42
112	Strength development of recycled concrete aggregate stabilized with fly ash-rice husk ash based geopolymer as pavement base material. Road Materials and Pavement Design, 2020, 21, 2344-2355.	4.0	42
113	Fly ash based geopolymer stabilisation of silty clay/blast furnace slag for subgrade applications. Road Materials and Pavement Design, 2021, 22, 357-371.	4.0	42
114	Evaluation of Effective Depth of PVD Improvement in Soft Clay Deposit: A Field Case Study. Marine Georesources and Geotechnology, 2016, 34, 420-430.	2.1	40
115	Tire derived aggregates as a supplementary material with recycled demolition concrete for pavement applications. Journal of Cleaner Production, 2019, 230, 129-136.	9.3	40
116	Experimental investigation and modelling the deformation properties of demolition wastes subjected to freeze–thaw cycles using ANN and SVR. Construction and Building Materials, 2020, 258, 119688.	7.2	40
117	Experimental and ANN analysis of temperature effects on the permanent deformation properties of demolition wastes. Transportation Geotechnics, 2020, 24, 100365.	4.5	40
118	Compressibility of lightweight cemented clays. Engineering Geology, 2013, 159, 59-66.	6.3	39
119	Strength and microstructure development in Bangkok clay stabilized with calcium carbide residue and biomass ash. ScienceAsia, 2013, 39, 186.	0.5	39
120	Effect of lime stabilization on the mechanical and micro-scale properties of recycled demolition materials. Sustainable Cities and Society, 2017, 30, 58-65.	10.4	38
121	Stiffness Properties of Recycled Concrete Aggregate with Polyethylene Plastic Granules in Unbound Pavement Applications. Journal of Materials in Civil Engineering, 2017, 29, .	2.9	38
122	Performance of Fiber-Reinforced Asphalt Concretes with Various Asphalt Binders in Thailand. Journal of Materials in Civil Engineering, 2018, 30, .	2.9	38
123	Swell-shrink Cycles of Lime Stabilized Expansive Subgrade. Procedia Engineering, 2016, 143, 615-622.	1.2	37
124	Engineering and Environmental Assessment of Recycled Construction and Demolition Materials Used with Geotextile for Permeable Pavements. Journal of Environmental Engineering, ASCE, 2015, 141, .	1.4	36
125	Effect of calcium-rich compounds on setting time and strength development of alkali-activated fly ash cured at ambient temperature. Case Studies in Construction Materials, 2018, 9, e00198.	1.7	36
126	Impact of potassium cations on the light chemical stabilization of construction and demolition wastes. Construction and Building Materials, 2019, 203, 69-74.	7.2	36

#	Article	IF	Citations
127	Assessment of mechanical properties of cement stabilized soils. Case Studies in Construction Materials, 2019, 11, e00301.	1.7	35
128	Flexural fatigue strength of demolition aggregates stabilized with alkali-activated calcium carbide residue. Construction and Building Materials, 2019, 199, 115-123.	7.2	35
129	Laboratory measurements of factors affecting discharge capacity of prefabricated vertical drain materials. Soils and Foundations, 2016, 56, 129-137.	3.1	33
130	Solidification–Stabilization of Heavy Metal–Contaminated Clays Using Gypsum: Multiscale Assessment. International Journal of Geomechanics, 2018, 18, .	2.7	33
131	Recycled Concrete Aggregate Modified with Polyvinyl Alcohol and Fly Ash for Concrete Pavement Applications. Journal of Materials in Civil Engineering, 2019, 31, .	2.9	33
132	Engineering properties of lightweight cellular cemented clayâ~fly ash material. Soils and Foundations, 2015, 55, 471-483.	3.1	32
133	Mix design charts for lightweight cellular cemented Bangkok clay. Applied Clay Science, 2015, 104, 318-323.	5.2	32
134	Interface shear strength properties of geogrid-reinforced steel slags using a large-scale direct shear testing apparatus. Geotextiles and Geomembranes, 2020, 48, 625-633.	4.6	32
135	Physical and mechanical properties of natural rubber modified cement paste. Construction and Building Materials, 2020, 244, 118319.	7.2	32
136	Water-Void to Cement Ratio Identity of Lightweight Cellular-Cemented Material. Journal of Materials in Civil Engineering, 2014, 26, .	2.9	31
137	Stiffness and strength characteristics of demolition waste, glass and plastics in railway capping layers. Soils and Foundations, 2019, 59, 2238-2253.	3.1	31
138	Quality management of prefabricated vertical drain materials in mega land reclamation projects: A case study. Soils and Foundations, 2015, 55, 895-905.	3.1	30
139	Hydrogeochemical environment of aquifer groundwater in Shanghai and potential hazards to underground infrastructures. Natural Hazards, 2015, 78, 753-774.	3.4	30
140	Protection of neighbour buildings due to construction of shield tunnel in mixed ground with sand over weathered granite. Environmental Earth Sciences, 2016, 75, 1.	2.7	30
141	Analysis of a tunnel failure caused by leakage of the shield tail seal system. Underground Space (China), 2020, 5, 105-114.	7.5	30
142	Field strength development of repaired pavement using the recycling technique. Quarterly Journal of Engineering Geology and Hydrogeology, 2012, 45, 221-229.	1.4	29
143	Numerical parametric study on behavior of bearing reinforcement earth walls with different backfill material properties. Geosynthetics International, 2016, 23, 435-451.	2.9	29
144	Recovered plastic and demolition waste blends as railway capping materials. Transportation Geotechnics, 2020, 22, 100320.	4.5	29

#	Article	IF	Citations
145	Engineering and environmental evaluation of spent coffee grounds stabilized with industrial by-products as a road subgrade material. Clean Technologies and Environmental Policy, 2017, 19, 63-75.	4.1	28
146	Water Treatment Sludge–Calcium Carbide Residue Geopolymers as Nonbearing Masonry Units. Journal of Materials in Civil Engineering, 2017, 29, .	2.9	28
147	Physical and Microstructure Properties of Geopolymer Nanocomposite Reinforced with Carbon Nanotubes. Materials Today: Proceedings, 2019, 17, 1682-1692.	1.8	28
148	Geohazards induced by anthropic activities of geoconstruction: a review of recent failure cases. Arabian Journal of Geosciences, 2016, 9, 1.	1.3	27
149	Performance Improvement of Asphalt Concretes Using Steel Slag as a Replacement Material. Journal of Materials in Civil Engineering, 2020, 32, .	2.9	27
150	Compaction behavior of fine-grained soils, lateritic soils and crushed rocks. Soils and Foundations, 2013, 53, 166-172.	3.1	26
151	Durability against wetting-drying cycles for cement-stabilized reclaimed asphalt pavement blended with crushed rock. Soils and Foundations, 2018, 58, 333-343.	3.1	26
152	Environmental and economic viability of Alkali Activated Material (AAM) comprising slag, fly ash and spent coffee ground. International Journal of Sustainable Engineering, 2019, 12, 223-232.	3.5	26
153	Shear Strength Improvement of Lateritic Soil Stabilized by Biopolymer Based Stabilizer. Geotechnical and Geological Engineering, 2019, 37, 5533-5541.	1.7	26
154	Mechanical Strength Improvement of Cement-Stabilized Soil Using Natural Rubber Latex for Pavement Base Applications. Journal of Materials in Civil Engineering, 2020, 32, .	2.9	26
155	Consolidation behavior of dredged ultra-soft soil improved with prefabricated vertical drain at the Mae Moh mine, Thailand. Geotextiles and Geomembranes, 2020, 48, 561-571.	4.6	26
156	Performance of an earth wall stabilized with bearing reinforcements. Geotextiles and Geomembranes, 2011, 29, 514-524.	4.6	25
157	Performances of SDCM and DCM walls under deep excavation in soft clay: Field tests and 3D simulations. Soils and Foundations, 2019, 59, 1728-1739.	3.1	25
158	Densification of Land Reclamation Sands by Deep Vibratory Compaction Techniques. Journal of Materials in Civil Engineering, 2014, 26, .	2.9	24
159	Evaluating the in-situ hydraulic conductivity of soft soil under land reclamation fills with the BAT permeameter. Engineering Geology, 2014, 168, 98-103.	6.3	24
160	Factors influencing unit weight and strength of lightweight cemented clay. Quarterly Journal of Engineering Geology and Hydrogeology, 2014, 47, 101-109.	1.4	24
161	Marginal lateritic soil/crushed slag blends as an engineering fill material. Soils and Foundations, 2018, 58, 786-795.	3.1	24
162	Utilization of Alkali-Activated Fly Ash for Construction of Deep Mixed Columns in Loose Sands. Journal of Materials in Civil Engineering, 2019, 31, .	2.9	24

#	Article	IF	CITATIONS
163	Strength prediction of cement-stabilised reclaimed asphalt pavement and lateritic soil blends. International Journal of Pavement Engineering, 2019, 20, 332-338.	4.4	24
164	Interface shear behaviours between recycled concrete aggregate and geogrids for pavement applications. International Journal of Pavement Engineering, 2020, 21, 228-235.	4.4	24
165	Shear strength properties and stress–strain behavior of waste foundry sand. Construction and Building Materials, 2020, 249, 118761.	7.2	24
166	Improvement of flexural strength of concrete pavements using natural rubber latex. Construction and Building Materials, 2021, 282, 122704.	7.2	24
167	State of the art in strength development of soil–cement columns. Proceedings of the Institution of Civil Engineers: Ground Improvement, 2012, 165, 201-215.	1.0	23
168	Earth pressures on the trenched HDPE pipes in fine-grained soils during construction phase: Full-scale field trial and finite element modeling. Transportation Geotechnics, 2017, 12, 56-69.	4.5	23
169	Strength and Microstructure of Palm Oil Fuel Ash–Fly Ash–Soft Soil Geopolymer Masonry Units. Journal of Materials in Civil Engineering, 2019, 31, .	2.9	23
170	Stiffness and strength properties of spent coffee grounds-recycled glass geopolymers. Road Materials and Pavement Design, 2019, 20, 623-638.	4.0	23
171	Stiffness and flexural strength evaluation of cement stabilized PET blends with demolition wastes. Construction and Building Materials, 2020, 239, 117819.	7.2	23
172	Dynamic characterization of recycled glass-recycled concrete blends using experimental analysis and artificial neural network modeling. Soil Dynamics and Earthquake Engineering, 2021, 142, 106544.	3.8	23
173	Thermal and mechanical properties of demolition wastes in geothermal pavements by experimental and machine learning techniques. Construction and Building Materials, 2021, 280, 122499.	7.2	23
174	Durability improvement of cement stabilized pavement base using natural rubber latex. Transportation Geotechnics, 2021, 28, 100518.	4.5	23
175	Assessment of internal forces for intermediate anchorage zone of post-tensioned concrete structure. Construction and Building Materials, 2014, 64, 370-378.	7.2	22
176	Extended water/cement ratio law for cement mortar containing recycled asphalt pavement. Construction and Building Materials, 2019, 196, 457-467.	7.2	22
177	Wetting-drying cycles durability of cement stabilised marginal lateritic soil/melamine debris blends for pavement applications. Road Materials and Pavement Design, 2020, 21, 500-518.	4.0	22
178	A Case History on Underpinning for a Distressed Building on Hard Residual Soil Underneath Non-Uniform Loose Sand. Soils and Foundations, 2008, 48, 267-285.	3.1	21
179	Environmental impacts caused by phosphate mining and ecological restoration: a case history in Kunming, China. Natural Hazards, 2014, 74, 755-770.	3.4	21
180	Improvement of marginal lateritic soil using Melamine Debris replacement for sustainable engineering fill materials. Journal of Cleaner Production, 2016, 134, 515-522.	9.3	21

#	Article	IF	Citations
181	Recycled concrete aggregate/municipal glass blends as a low-carbon resource material for footpaths. Road Materials and Pavement Design, 2018, 19, 727-740.	4.0	21
182	Microstructural characteristics of organic soils treated with biomass silica stabilizer. Environmental Earth Sciences, 2019, 78, 1.	2.7	21
183	Influence Factors Involving Rainfall-Induced Shallow Slope Failure: Numerical Study. International Journal of Geomechanics, 2017, 17, .	2.7	20
184	Stability characteristics of shallow landslide triggered by rainfall. Journal of Mountain Science, 2019, 16, 2171-2183.	2.0	20
185	Tyre derived aggregates and waste rock blends: Resilient moduli characteristics. Construction and Building Materials, 2019, 201, 207-217.	7.2	20
186	Shakedown analysis of recycled materials as railway capping layer under cyclic loading. Soil Dynamics and Earthquake Engineering, 2020, 139, 106423.	3.8	20
187	Compressibility and strength development of geopolymer stabilized columns cured under stress. Soils and Foundations, 2020, 60, 1241-1250.	3.1	20
188	Influential Factors Affecting Travelers' Mode Choice Behavior on Mass Transit in Bangkok, Thailand. Sustainability, 2020, 12, 9522.	3.2	20
189	Performance and evaluation of calcium carbide residue stabilized lateritic soil for construction materials. Case Studies in Construction Materials, 2020, 13, e00389.	1.7	20
190	Evaluation of polyvinyl alcohol and high calcium fly ash based geopolymer for the improvement of soft Bangkok clay. Transportation Geotechnics, 2021, 27, 100476.	4.5	20
191	Numerical analysis of bearing reinforcement earth (BRE) wall. Geotextiles and Geomembranes, 2012, 32, 28-37.	4.6	19
192	Evaluation of Interface Shear Strength Properties of Geogrid Reinforced Foamed Recycled Glass Using a Large-Scale Direct Shear Testing Apparatus. Advances in Materials Science and Engineering, 2015, 2015, 1-8.	1.8	19
193	Laboratory investigation on the compressibility of Singapore marine clays. Marine Georesources and Geotechnology, 2017, 35, 847-856.	2.1	19
194	A new approach for determining resilient moduli of marginal pavement base materials using the staged repeated load CBR test method. Road Materials and Pavement Design, 2018, 19, 1848-1867.	4.0	19
195	Laboratory Investigation of Cement-Stabilized Marginal Lateritic Soil by Crushed Slag–Fly Ash Replacement for Pavement Applications. Journal of Materials in Civil Engineering, 2020, 32, .	2.9	19
196	Discrete element analysis of recycled concrete aggregate responses during repeated load triaxial testing. Transportation Geotechnics, 2020, 23, 100356.	4.5	19
197	Cement stabilisation of recycled concrete aggregate modified with polyvinyl alcohol. International Journal of Pavement Engineering, 2022, 23, 349-357.	4.4	19
198	Shakedown analysis of PET blends with demolition waste as pavement base/subbase materials using experimental and neural network methods. Transportation Geotechnics, 2021, 27, 100481.	4.5	19

#	Article	IF	CITATIONS
199	Variations in strength of lime-treated soft clays. Proceedings of the Institution of Civil Engineers: Ground Improvement, 2012, 165, 217-223.	1.0	18
200	A combined X-ray absorption spectroscopy and molecular dynamic simulation to study the local structure potassium ion in hydrated montmorillonite. Journal of Materials Science, 2015, 50, 7126-7136.	3.7	18
201	Strength and morphological characteristics of organic soil stabilized with magnesium chloride. Quarterly Journal of Engineering Geology and Hydrogeology, 2017, 50, 454-459.	1.4	18
202	Impact of curing on behaviour of basaltic expansive clay. Road Materials and Pavement Design, 2018, 19, 624-645.	4.0	18
203	Effect of cumulative traffic and statistical predictive modelling of field skid resistance. Road Materials and Pavement Design, 2019, 20, 426-439.	4.0	18
204	Application of artificial neural network models for predicting the resilient modulus of recycled aggregates. International Journal of Pavement Engineering, 2022, 23, 1121-1133.	4.4	18
205	Complete Compression Curves of Reconstituted Clays. International Journal of Geomechanics, 2016, 16, 06016005.	2.7	17
206	Hydrological responses and stability analysis of shallow slopes with cohesionless soil subjected to continuous rainfall. Canadian Geotechnical Journal, 2016, 53, 2001-2013.	2.8	17
207	Development of sustainable masonry units from flood mud soil: Strength and morphology investigations. Construction and Building Materials, 2017, 131, 682-689.	7.2	17
208	Investigation of tensile strength on alkaline treated and untreated kenaf geotextile under dry and wet conditions. Geotextiles and Geomembranes, 2019, 47, 522-529.	4.6	17
209	Properties of cellular lightweight high calcium bottom ash-portland cement geopolymer mortar. Case Studies in Construction Materials, 2020, 12, e00337.	1.7	17
210	Compressive strengths of water treatment sludge-fly ash geopolymer at various compression energies. Lowland Technology International, 2015, 17, 147-156.	0.3	17
211	Investigation of hydraulic parameters of a weathered mylonite fault from field pumping tests: A case study. Bulletin of Engineering Geology and the Environment, 2017, 76, 1431-1448.	3.5	16
212	Properties of Asphalt Concrete Using Aggregates Composed of Limestone and Steel Slag Blends. Journal of Materials in Civil Engineering, 2020, 32, .	2.9	16
213	Stabilization of PET plastic-demolition waste blends using fly ash and slag-based geopolymers in light traffic road bases/subbases. Construction and Building Materials, 2021, 284, 122809.	7.2	16
214	Investigating the thermal behaviour of geothermal pavements using Thermal Response Test (TRT). Transportation Geotechnics, 2021, 29, 100576.	4.5	16
215	A mathematical function to represent S-shaped relationships for geotechnical applications. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 2013, 166, 321-327.	1.6	15
216	Closed-form solution for shear lag with derived flange deformation function. Journal of Constructional Steel Research, 2014, 102, 104-110.	3.9	14

#	Article	IF	CITATIONS
217	Concrete wedge and coarse sand coating shear connection system in GFRP concrete composite deck. Construction and Building Materials, 2016, 114, 650-655.	7.2	14
218	Skid Resistance of Asphalt Concrete at the Construction Stage Based on Thai Aggregates. Journal of Materials in Civil Engineering, 2016, 28, .	2.9	14
219	Performance of the bearing reinforcement earth wall as a retaining structure in the Mae Moh mine, Thailand. Geotextiles and Geomembranes, 2017, 45, 350-360.	4.6	14
220	Bearing capacity of soft soil model treated with end-bearing bottom ash columns. Environmental Earth Sciences, 2018, 77, 1.	2.7	14
221	Volumetric Behavior and Soil Water Characteristic Curve of Untreated and Lime-Stabilized Reactive Clay. International Journal of Geomechanics, 2019, 19, .	2.7	14
222	Recycled Glass Blends with Recycled Concrete Aggregates in Sustainable Railway Geotechnics. Sustainability, 2021, 13, 2463.	3.2	14
223	Performance improvement of asphalt concretes using fiber reinforcement. Heliyon, 2021, 7, e07015.	3.2	14
224	Sustainable Stabilization of Compacted Clay Using Sodium Alginate for Subgrade Application. International Journal of Geosynthetics and Ground Engineering, 2021, 7, 1.	2.0	14
225	Interaction of the calcium ion with poly(acrylic acid) as investigated by a combination of molecular dynamics simulation and X-ray absorption spectroscopy. Journal of Polymer Research, 2016, 23, 1.	2.4	13
226	Pullout resistance of bearing reinforcement embedded in marginal lateritic soil at molding water contents. Geotextiles and Geomembranes, 2016, 44, 475-483.	4.6	13
227	Geotechnical properties of steel slag aggregates: Shear strength and stiffness. Soils and Foundations, 2019, 59, 1591-1601.	3.1	13
228	Evaluation of durability against wetting and drying cycles of cement-natural rubber latex stabilised unpaved road under cyclic tensile loading. International Journal of Pavement Engineering, 2022, 23, 4442-4453.	4.4	13
229	Failure of riverbank protection structure and remedial approach: A case study in Suraburi province, Thailand. Engineering Failure Analysis, 2018, 91, 243-254.	4.0	12
230	Field Performance of Open-Ended Prestressed High-Strength Concrete Pipe Piles Jacked into Clay. Sensors, 2018, 18, 4216.	3.8	12
231	Case investigation on application of steel fibers in roller compacted concrete pavement in Thailand. Case Studies in Construction Materials, 2019, 11, e00271.	1.7	12
232	Sustainable Soil Bearing Capacity Improvement Using Natural Limited Life Geotextile Reinforcement—A Review. Minerals (Basel, Switzerland), 2020, 10, 479.	2.0	12
233	Soil–Cement Screw Pile: Alternative Pile for Low- and Medium-Rise Buildings in Soft Bangkok Clay. Journal of Construction Engineering and Management - ASCE, 2021, 147, 04020173.	3.8	12
234	New threshold for landslide warning in the southern part of Thailand integrates cumulative rainfall with event rainfall depth-duration. Natural Hazards, 2022, 113, 125-141.	3.4	12

#	Article	IF	CITATIONS
235	Development of Room Temperature Curing Geopolymer from Calcined Water-Treatment-Sludge and Rice Husk Ash. RILEM Bookseries, 2015, , 291-297.	0.4	11
236	Step Loading Compression of Ultra-Soft Soil under Radial Drainage Conditions. Marine Georesources and Geotechnology, 2016, 34, 648-658.	2.1	11
237	Steady flow in mechanically stabilised earth walls using marginal soils with geocomposites. Geosynthetics International, 2017, 24, 590-606.	2.9	11
238	Investigation into the tempo-spatial distribution of recent fire hazards in China. Natural Hazards, 2018, 92, 1889-1907.	3.4	11
239	Alkali activation of lime kiln dust and fly ash blends for the stabilisation of demolition wastes. Road Materials and Pavement Design, 2020, 21, 1514-1528.	4.0	11
240	Evaluation of shear strength properties of unbound PET plastic in blends with demolition wastes. Construction and Building Materials, 2020, 262, 120545.	7.2	11
241	Compressibility of ultra-soft soil in the Mae Moh Mine, Thailand. Engineering Geology, 2020, 271, 105594.	6.3	11
242	Performance and Toxic Leaching Evaluation of Dense-Graded Asphalt Concrete Using Steel Slag as Aggregate. Journal of Materials in Civil Engineering, 2021, 33, .	2.9	11
243	Resilient moduli of demolition wastes in geothermal pavements: Experimental testing and ANFIS modelling. Transportation Geotechnics, 2021, 29, 100592.	4.5	11
244	Thermal performance of geothermal pavements constructed with demolition wastes. Geomechanics for Energy and the Environment, 2021, 28, 100253.	2.5	11
245	Strength and permanent deformation properties of demolition wastes, glass, and plastics stabilized with foamed bitumen for pavement bases. Construction and Building Materials, 2022, 320, 126108.	7.2	11
246	Development of Low Cost Geopolymer from Calcined Sedimentary Clay. RILEM Bookseries, 2015, , 359-364.	0.4	10
247	Modeling of Coupled Mechanical–Hydrological Processes in Compressed-Air-Assisted Tunneling in Unconsolidated Sediments. Transport in Porous Media, 2015, 108, 105-129.	2.6	10
248	Estimating the compression behaviour of metal-rich clays via a Disturbed State Concept (DSC) model. Applied Clay Science, 2016, 132-133, 50-58.	5.2	10
249	Pullout resistance mechanism of bearing reinforcement embedded in coarse-grained soils: Laboratory and field investigations. Transportation Geotechnics, 2020, 22, 100297.	4.5	10
250	Bagasse ash–fly ash-geopolymer-treated soft Bangkok clay as subgrade material. Environmental Geotechnics, 2023, 10, 409-416.	2.3	10
251	Mechanical Properties of Fly Ash–Asphalt Emulsion Geopolymer Stabilized Crushed Rock for Sustainable Pavement Base. Journal of Materials in Civil Engineering, 2021, 33, .	2.9	10
252	DEM modeling and experimental analysis of the breakage behavior of recycled crushed brick particles. Transportation Geotechnics, 2021, 30, 100586.	4.5	10

#	Article	IF	Citations
253	Modified Ohio's Curves: A Rapid Estimation of Compaction Curves for Coarse- and Fine-Grained Soils. Geotechnical Testing Journal, 2009, 32, 64-75.	1.0	10
254	Improvement of Tensile Properties of Cement-Stabilized Soil Using Natural Rubber Latex. Journal of Materials in Civil Engineering, 2022, 34, .	2.9	10
255	Geotechnical characteristics of weathered granitic gneiss with geo-hazards investigation of pit excavation in Guangzhou, China. Bulletin of Engineering Geology and the Environment, 2017, 76, 681-694.	3.5	9
256	Environmental Suitability and Carbon Footprint Savings of Recycled Tyre Crumbs for Road Applications. International Journal of Environmental Research, 2018, 12, 693-702.	2.3	9
257	Wheel tracker testing of recycled concrete and tyre aggregates in Australia. Geotechnical Research, 2020, 7, 49-57.	1.4	9
258	Improved heavy metal immobilization of compacted clay by cement treatment. Heliyon, 2021, 7, e06917.	3.2	9
259	Improved Mechanical Properties of Cement-Stabilized Soft Clay Using Garnet Residues and Tire-Derived Aggregates for Subgrade Applications. Sustainability, 2021, 13, 11692.	3.2	9
260	Evaluation of rutting resistance and geotechnical properties of cement stabilized recycled glass, brick and concrete triple blends. Transportation Geotechnics, 2022, 34, 100755.	4.5	9
261	Improved Performance of Asphalt Concretes using Bottom Ash as an Alternative Aggregate. Sustainability, 2022, 14, 7033.	3.2	9
262	Bearing capacity performance of soft cohesive soil treated by kenaf limited life geotextile. Marine Georesources and Geotechnology, 2020, 38, 755-760.	2.1	8
263	Predicting Pullout Resistance of Bearing Reinforcement Embedded in Cohesive-Frictional Soils. Journal of Materials in Civil Engineering, 2020, 32, .	2.9	8
264	Geothermal pavements: field observations, numerical modelling and long-term performance. Geotechnique, 2022, 72, 832-846.	4.0	8
265	Cyclic behavior of semi-rigid recovered plastic blends in railway track substructure. Transportation Geotechnics, 2021, 28, 100514.	4.5	8
266	Environmentally Friendly Slope Stabilization Using a Soil Nail and Root System in Canada. , 2015, , 629-654.		7
267	Flexural responses of nanobeams with coupled effects of nonlocality and surface energy. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2018, 98, 1771-1793.	1.6	7
268	Enhancement of Soft Soil Behaviour by using Floating Bottom Ash Columns. KSCE Journal of Civil Engineering, 2019, 23, 2453-2462.	1.9	7
269	Enhancing the Bearing Capacity of Rigid Footing Using Limited Life Kenaf Geotextile Reinforcement. Journal of Natural Fibers, 2022, 19, 2868-2884.	3.1	7
270	Engineering and Leachate Characteristics of Granulated Blast-Furnace Slag as a Construction Material. Journal of Materials in Civil Engineering, 2020, 32, .	2.9	7

#	Article	IF	Citations
271	Environmentally sustainable groundwater control during dewatering with barriers: A case study in Shanghai. Underground Space (China), 2021, 6, 12-23.	7. 5	7
272	Load Bearing Capacity of Cohesive-Frictional Soils Reinforced with Full-Wraparound Geotextiles: Experimental and Numerical Investigation. Applied Sciences (Switzerland), 2021, 11, 2973.	2.5	7
273	Geotechnical and geoenvironmental engineering education during the pandemic. Environmental Geotechnics, 2021, 8, 233-243.	2.3	7
274	Engineering Characteristics and Environmental Risks of Utilizing Recycled Aluminum Salt Slag and Recycled Concrete as a Sustainable Geomaterial. Sustainability, 2021, 13, 10633.	3.2	7
275	Mineralogy and Geotechnical Properties of Ultrasoft Soil from a Nearshore Mine Tailings Sedimentation Pond. Marine Georesources and Geotechnology, 2016, 34, 782-791.	2.1	6
276	Nonlinear Frame Element with Shear–Flexure Interaction for Seismic Analysis of Non-Ductile Reinforced Concrete Columns. International Journal of Concrete Structures and Materials, 2019, 13, .	3.2	6
277	Solidification and stabilisation of metal plating sludge with fly ash geopolymers. Environmental Geotechnics, 2019, , 1-10.	2.3	6
278	Effect of moisture sensitivity on the light stabilisation of demolition materials in pavement bases. Road Materials and Pavement Design, 2022, 23, 787-801.	4.0	6
279	Permanent Deformation and Rutting Resistance of Demolition Waste Triple Blends in Unbound Pavement Applications. Materials, 2021, 14, 798.	2.9	6
280	Carbonated ground granulated blast furnace slag stabilising brown kaolin. Environmental Science and Pollution Research, 2021, 28, 57308-57320.	5.3	6
281	Microstructural and mechanical properties of marine clay cemented with industrial waste residue-based binder (IWRB). Acta Geotechnica, 2022, 17, 1859-1877.	5.7	6
282	Detecting Gilgai Relief Beneath Sealed Flexible Pavements Using Road Profile and Road Roughness Measurements. Indian Geotechnical Journal, 2015, 45, 431-440.	1.4	5
283	Research-oriented ground investigation projects at Changi, Singapore. Geotechnical Research, 2017, 4, 30-46.	1.4	5
284	Recycled asphalt pavement – fly ash geopolymer as a sustainable stabilized pavement material. IOP Conference Series: Materials Science and Engineering, 2017, 273, 012005.	0.6	5
285	Cement-treated recycled glass and crushed rock blends: modulus of rupture and stiffness properties. International Journal of Pavement Engineering, 2022, 23, 851-861.	4.4	5
286	Evaluation of Interface Shear Strength of Natural Kenaf Geogrid and Recycled Concrete Aggregate for Sustainable Pavement Applications. Journal of Natural Fibers, 2022, 19, 6165-6181.	3.1	5
287	DEM simulation of the thermo-geomechanical effect of recycled concrete aggregate assemblies in geothermal pavement bases. Transportation Geotechnics, 2021, 28, 100528.	4.5	5
288	Generalized Interface Shear Strength Equation for Recycled Materials Reinforced with Geogrids. Sustainability, 2021, 13, 9446.	3.2	5

#	Article	IF	Citations
289	Evaluating the effective thermal conductivity of geothermal pavements constructed using demolition wastes by DEM and 3D printing techniques. Acta Geotechnica, 2022, 17, 1681-1697.	5. 7	5
290	Use of Geogrid Encasement to Increase the Ductility of Cement-Mixed Clay. Journal of Testing and Evaluation, 2017, 45, 1787-1799.	0.7	5
291	Engineering Behaviour of a Geopolymer-stabilised High-water Content Soft Clay. International Journal of Geosynthetics and Ground Engineering, 2022, 8, .	2.0	5
292	Determination of liquid limit of a low swelling clay using different cone angles. Applied Clay Science, 2016, 132-133, 748-752.	5.2	4
293	Influential factors affecting drainage design considerations for mechanical stabilised earth walls using geocomposites. Geosynthetics International, 2016, , 1-18.	2.9	4
294	Finite element analysis of the non-uniform behavior of structured clay under shear. KSCE Journal of Civil Engineering, 2016, 20, 1300-1313.	1.9	4
295	Numerical and sensitivity analysis of Bearing Reinforcement Earth (BRE) wall. KSCE Journal of Civil Engineering, 2017, 21, 195-208.	1.9	4
296	Assessing the performance of geothermal pavement constructed using demolition wastes by experimental and CFD simulation techniques. Geomechanics for Energy and the Environment, 2022, 29, 100271.	2.5	4
297	Role of Fly Ash on Strength Properties of Rejuvenated Soil Cement for Pavement Materials. Civil and Environmental Engineering, 2021, 17, 583-596.	1.2	4
298	Natural Rubber Latex–Modified Concrete Pavements: Evaluation and Design Approach. Journal of Materials in Civil Engineering, 2022, 34, .	2.9	4
299	Potential Micro-Hydropower Assessment in Mun River Basin, Thailand. , 2011, , .		3
300	Sustainable Usage of Construction and Demolition Materials in Roads and Footpaths. Springer Transactions in Civil and Environmental Engineering, 2017, , 3-13.	0.4	3
301	Environmental assessment of cement-stabilised lateritic soil/melamine debris for Thailand's pavement. Environmental Geotechnics, 0, , 1-7.	2.3	3
302	An extended modified cam clay model for improved accuracy at low and high-end stress levels. Marine Georesources and Geotechnology, 2020, 38, 423-436.	2.1	3
303	Hybrid Formulation of Resilient Modulus for Cohesive Subgrade Soils Utilizing CPT Test Parameters. Journal of Materials in Civil Engineering, 2020, 32, 06020011.	2.9	3
304	Stress-dilatancy responses of recovered plastics and demolition waste blends as a construction material. Construction and Building Materials, 2021, 297, 123762.	7.2	3
305	Strength and Microstructure of Clay Geopolymer Non-Load-Bearing Masonry Units Using Fine-Clay Brick Waste and Palm Oil Fuel Ash. Journal of Materials in Civil Engineering, 2021, 33, .	2.9	3
306	Surface stabilization of clay using sodium alginate. Case Studies in Construction Materials, 2022, 16, e01006.	1.7	3

#	Article	IF	Citations
307	Stability investigation of the flood protection structure at Nava Nakorn industrial estate, Thailand. Engineering Failure Analysis, 2022, 137, 106279.	4.0	3
308	Cement – natural rubber latex stabilised recycled concrete aggregate as a pavement base material. Road Materials and Pavement Design, 2023, 24, 1636-1650.	4.0	3
309	Laboratory Approach for Faster Determination of the Loading-Collapse Yield Curve of Compacted Soils. Journal of Materials in Civil Engineering, 2016, 28, 04015148.	2.9	2
310	The Influence of a Curing Regime on the Geotechnical Properties of Ladle Furnace Slag as Used in Pavement Applications. , 2017 , , .		2
311	Environmental benefits and recycling options for wood chips from furniture industries. Proceedings of Institution of Civil Engineers: Waste and Resource Management, 2017, 170, 85-91.	0.8	2
312	Temperature and Duration Impact on the Strength Development of Geopolymerized Granulated Blast Furnace Slag for Usage as a Construction Material. Journal of Materials in Civil Engineering, 2021, 33, .	2.9	2
313	1D Constitutive Model for Expansive Soils. International Journal of Geomechanics, 2021, 21, 04020260.	2.7	2
314	Full scale consolidation test on ultra-soft soil improved by prefabricated vertical drains in MAE MOH mine, Thailand. Geotextiles and Geomembranes, 2021, 49, 72-80.	4.6	2
315	Crushing behavior of recycled waste materials: Experimental analysis and DEM simulation. Construction and Building Materials, 2021, 299, 124226.	7.2	2
316	Finite Element Analysis of Consolidation Behavior of Composite Soft Ground., 2012,,.		1
317	Pullout resistance mechanism of bearing reinforcement embedded in residual clayey soils. Geosynthetics International, 0, , 1-9.	2.9	1
318	Explicit stress–strain equations for modeling frictional materials. Marine Georesources and Geotechnology, 2018, 36, 722-734.	2.1	1
319	Environmentally sustainable groundwater control during dewatering with barriers: A case study in Shanghai. Underground Space (China), 2019, , .	7.5	1
320	Hydraulic transmissivity of geocomposite confined with soils. Measurement: Journal of the International Measurement Confederation, 2021, 175, 109106.	5.0	1
321	Improvement of swelling-collapsible behaviors of silty clay by calcium carbide residue., 2012,, 326-333.		1
322	Wetting and Drying Characteristics of Recycled Asphalt Pavement-Fly Ash Blend as a Sustainable Pavement Material. DEStech Transactions on Materials Science and Engineering, 2017, , .	0.0	1
323	Deep Compaction of Granular Fills in a Land Reclamation Project by Dynamic and Vibratory Compaction Techniques., 2015,, 263-274.		1
324	The Flow Response of Reinforced Earth Structures Utilized Fine-Grained Poorly Draining Materials as Backfill. Lecture Notes in Civil Engineering, 2018, , 598-609.	0.4	1

#	Article	IF	CITATIONS
325	Development of Green Construction Material from MWA Water Treatment Sludge. , 0, , .		1
326	Experimental Evaluation of Strut-and-Tie Model of Anchorage Zone in Posttensioned Concrete Structures. Journal of Testing and Evaluation, 2020, 48, 20180883.	0.7	1
327	Composite contiguous pile wall and deep mixing column wall as a dam –Design, construction and performance. Case Studies in Construction Materials, 2021, 15, e00771.	1.7	1
328	Closure to "Influence Factors Involving Rainfall-Induced Shallow Slope Failure: Numerical Study―by Somjai Yubonchit, Avirut Chinkulkijniwat, Suksun Horpibulsuk, Chatchai Jothityangkoon, Arul Arulrajah, and Apichat Suddeepong. International Journal of Geomechanics, 2018, 18, 07018004.	2.7	0
329	Assessment of disturbance impact of hydraulic jacked-in pile penetration in artificial clayey soil. Marine Georesources and Geotechnology, 2021, 39, 631-637.	2.1	O
330	Steady-State Groundwater in Mechanical Stabilized Earth Walls of Various Dimensions with Geocomposite Back Drain Installation. International Journal of Geomechanics, 2021, 21, 04021017.	2.7	0
331	Geothermal Pavements: An Experimental and Numerical Study on Thermal Performance. Sustainable Civil Infrastructures, 2021, , 65-82.	0.2	O
332	Pullout mechanism of the bearing reinforcement embedded in claystone soil of Mae Moh mine. Japanese Geotechnical Society Special Publication, 2016, 2, 2204-2208.	0.2	0
333	Finite element analysis of performance of bearing reinforcement earth wall., 2018,, 1423-1430.		0
334	Influence of periodical rainfall on shallow slope failures based on finite element analysis., 2018,, 1091-1096.		0