Jerry Pelletier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8121101/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature, 1988, 334, 320-325.	27.8	1,896
2	WT-1 is required for early kidney development. Cell, 1993, 74, 679-691.	28.9	1,853
3	Germline mutations in the Wilms' tumor suppressor gene are associated with abnormal urogenital development in Denys-Drash syndrome. Cell, 1991, 67, 437-447.	28.9	911
4	Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature, 2004, 428, 332-337.	27.8	898
5	The candidate Wilms' tumour gene is involved in genitourinary development. Nature, 1990, 346, 194-197.	27.8	814
6	Insertion mutagenesis to increase secondary structure within the 5′ noncoding region of a eukaryotic mRNA reduces translational efficiency. Cell, 1985, 40, 515-526.	28.9	666
7	Targeting the translation machinery in cancer. Nature Reviews Drug Discovery, 2015, 14, 261-278.	46.4	628
8	RNA G-quadruplexes cause elF4A-dependent oncogene translation in cancer. Nature, 2014, 513, 65-70.	27.8	506
9	The Energy Sensor AMPK Regulates T Cell Metabolic Adaptation and Effector Responses InÂVivo. Immunity, 2015, 42, 41-54.	14.3	505
10	elF2α Phosphorylation Bidirectionally Regulates the Switch from Short- to Long-Term Synaptic Plasticity and Memory. Cell, 2007, 129, 195-206.	28.9	437
11	Dissecting elF4E action in tumorigenesis. Genes and Development, 2007, 21, 000.2-000.	5.9	411
12	Functional characterization of IRESes by an inhibitor of the RNA helicase eIF4A. Nature Chemical Biology, 2006, 2, 213-220.	8.0	317
13	Anaplastic Wilms' tumour, a subtype displaying poor prognosis, harbours p53 gene mutations. Nature Genetics, 1994, 7, 91-97.	21.4	304
14	Targeting the eIF4F Translation Initiation Complex: A Critical Nexus for Cancer Development. Cancer Research, 2015, 75, 250-263.	0.9	291
15	Inhibition of Ribosome Recruitment Induces Stress Granule Formation Independently of Eukaryotic Initiation Factor 2α Phosphorylation. Molecular Biology of the Cell, 2006, 17, 4212-4219.	2.1	279
16	Therapeutic suppression of translation initiation modulates chemosensitivity in a mouse lymphoma model. Journal of Clinical Investigation, 2008, 118, 2651-60.	8.2	272
17	Antitumor Activity and Mechanism of Action of the Cyclopenta[b]benzofuran, Silvestrol. PLoS ONE, 2009, 4, e5223.	2.5	255
18	mTORC1 promotes survival through translational control of Mcl-1. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10853-10858.	7.1	250

#	Article	IF	CITATIONS
19	Structural conservation of druggable hot spots in protein–protein interfaces. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13528-13533.	7.1	220
20	Germline intronic and exonic mutations in the Wilms' tumour gene (WT1) affecting urogenital development. Nature Genetics, 1992, 1, 144-148.	21.4	209
21	Stimulation of mammalian translation initiation factor eIF4A activity by a small molecule inhibitor of eukaryotic translation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10460-10465.	7.1	209
22	Pharmacological inhibition of DNA-PK stimulates Cas9-mediated genome editing. Genome Medicine, 2015, 7, 93.	8.2	199
23	The Organizing Principles of Eukaryotic Ribosome Recruitment. Annual Review of Biochemistry, 2019, 88, 307-335.	11.1	196
24	Modulation of RNA Condensation by the DEAD-Box Protein elF4A. Cell, 2020, 180, 411-426.e16.	28.9	189
25	Therapeutic Inhibition of MAP Kinase Interacting Kinase Blocks Eukaryotic Initiation Factor 4E Phosphorylation and Suppresses Outgrowth of Experimental Lung Metastases. Cancer Research, 2011, 71, 1849-1857.	0.9	182
26	nanoCAGE reveals 5′ UTR features that define specific modes of translation of functionally related MTOR-sensitive mRNAs. Genome Research, 2016, 26, 636-648.	5.5	177
27	Evidence for a familial Wilms' tumour gene (FWT1) on chromosome 17q12–q21. Nature Genetics, 1996, 13, 461-463.	21.4	166
28	Reversing chemoresistance by small molecule inhibition of the translation initiation complex eIF4F. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1046-1051.	7.1	153
29	c-Myc and eIF4F Are Components of a Feedforward Loop that Links Transcription and Translation. Cancer Research, 2008, 68, 5326-5334.	0.9	147
30	RNA-Mediated Sequestration of the RNA Helicase eIF4A by Pateamine A Inhibits Translation Initiation. Chemistry and Biology, 2006, 13, 1287-1295.	6.0	144
31	Characterization of hMTr1, a Human Cap1 2′-O-Ribose Methyltransferase*. Journal of Biological Chemistry, 2010, 285, 33037-33044.	3.4	136
32	A tumour suppressor network relying on the polyamine–hypusine axis. Nature, 2012, 487, 244-248.	27.8	133
33	Exploring the Impact of Single-Nucleotide Polymorphisms on Translation. Frontiers in Genetics, 2018, 9, 507.	2.3	128
34	The biology of DHX9 and its potential as a therapeutic target. Oncotarget, 0, 7, 42716-42739.	1.8	124
35	Inhibitors of protein synthesis identified by a high throughput multiplexed translation screen. Nucleic Acids Research, 2004, 32, 902-915.	14.5	123
36	Caliciviruses Differ in Their Functional Requirements for eIF4F Components. Journal of Biological Chemistry, 2006, 281, 25315-25325.	3.4	120

#	Article	IF	CITATIONS
37	MicroRNAs Trigger Dissociation of elF4AI and elF4AII from Target mRNAs in Humans. Molecular Cell, 2014, 56, 79-89.	9.7	117
38	Initiation of Protein Synthesis by Hepatitis C Virus Is Refractory to Reduced eIF2 · GTP · Met-tRNAiMetTernary Complex Availability. Molecular Biology of the Cell, 2006, 17, 4632-4644.	2.1	114
39	Selective Pharmacological Targeting of a DEAD Box RNA Helicase. PLoS ONE, 2008, 3, e1583.	2.5	111
40	Repurposing CRISPR/Cas9 for in situ functional assays. Genes and Development, 2013, 27, 2602-2614.	5.9	110
41	Enantioselective Synthesis of the Complex Rocaglate (â^')‣ilvestrol. Angewandte Chemie - International Edition, 2007, 46, 7831-7834.	13.8	108
42	Targeting cap-dependent translation blocks converging survival signals by AKT and PIM kinases in lymphoma. Journal of Experimental Medicine, 2011, 208, 1799-1807.	8.5	103
43	Evidence for a Functionally Relevant Rocaglamide Binding Site on the eIF4A–RNA Complex. ACS Chemical Biology, 2013, 8, 1519-1527.	3.4	102
44	Tumorigenic activity and therapeutic inhibition of Rheb GTPase. Genes and Development, 2008, 22, 2178-2188.	5.9	100
45	Inhibition of translation by RNA–small molecule interactions. Rna, 2002, 8, 452-463.	3.5	99
46	Determinants of Sensitivity and Resistance to Rapamycin-Chemotherapy Drug Combinations <i>In vivo</i> . Cancer Research, 2006, 66, 7639-7646.	0.9	96
47	A cellular response linking elF4AI activity to elF4AII transcription. Rna, 2012, 18, 1373-1384.	3.5	96
48	Translation Initiation Factors: Reprogramming Protein Synthesis in Cancer. Trends in Cell Biology, 2016, 26, 918-933.	7.9	96
49	Protospacer Adjacent Motif (PAM)-Distal Sequences Engage CRISPR Cas9 DNA Target Cleavage. PLoS ONE, 2014, 9, e109213.	2.5	94
50	Blocking eIF4E-eIF4G Interaction as a Strategy To Impair Coronavirus Replication. Journal of Virology, 2011, 85, 6381-6389.	3.4	93
51	Structure of human IFIT1 with capped RNA reveals adaptable mRNA binding and mechanisms for sensing N1 and N2 ribose 2â€2-O methylations. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2106-E2115.	7.1	86
52	Synthesis of Rocaglamide Hydroxamates and Related Compounds as Eukaryotic Translation Inhibitors: Synthetic and Biological Studies. Journal of Medicinal Chemistry, 2012, 55, 558-562.	6.4	83
53	Synergistic effects between analogs of DNA and RNA improve the potency of siRNA-mediated gene silencing. Nucleic Acids Research, 2010, 38, 4547-4557.	14.5	81
54	CRISPR-Mediated Drug-Target Validation Reveals Selective Pharmacological Inhibition of the RNA Helicase, eIF4A. Cell Reports, 2016, 15, 2340-2347.	6.4	81

#	Article	IF	CITATIONS
55	Targeting Synthetic Lethal Interactions between Myc and the elF4F Complex Impedes Tumorigenesis. Cell Reports, 2012, 1, 325-333.	6.4	79
56	Conditional Reverse Tet-Transactivator Mouse Strains for the Efficient Induction of TRE-Regulated Transgenes in Mice. PLoS ONE, 2014, 9, e95236.	2.5	79
57	Altering Chemosensitivity by Modulating Translation Elongation. PLoS ONE, 2009, 4, e5428.	2.5	77
58	2′-Fluoro-4′-thioarabino-modified oligonucleotides: conformational switches linked to siRNA activity. Nucleic Acids Research, 2007, 35, 1441-1451.	14.5	76
59	CDK4/6 inhibitors target SMARCA4-determined cyclin D1 deficiency in hypercalcemic small cell carcinoma of the ovary. Nature Communications, 2019, 10, 558.	12.8	76
60	Analysis of the 11p13 Wilms' Tumor Suppressor Gene (WTI) in Ovarian Tumors. Cancer Investigation, 1993, 11, 393-399.	1.3	69
61	Targeting the elF4A RNA helicase as an anti-neoplastic approach. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 781-791.	1.9	69
62	The desmoplastic small round cell tumor t(11;22) translocation produces EWS/WT1 isoforms with differing oncogenic properties. Oncogene, 1998, 16, 1973-1979.	5.9	68
63	elF4A supports an oncogenic translation program in pancreatic ductal adenocarcinoma. Nature Communications, 2019, 10, 5151.	12.8	64
64	Biomimetic Photocycloaddition of 3â€Hydroxyflavones: Synthesis and Evaluation of Rocaglate Derivatives as Inhibitors of Eukaryotic Translation. Angewandte Chemie - International Edition, 2010, 49, 6533-6538.	13.8	62
65	The Herpes Simplex Virus 1 vhs Protein Enhances Translation of Viral True Late mRNAs and Virus Production in a Cell Type-Dependent Manner. Journal of Virology, 2011, 85, 5363-5373.	3.4	61
66	Eukaryotic protein synthesis inhibitors identified by comparison of cytotoxicity profiles. Rna, 2004, 10, 528-543.	3.5	55
67	Synergistic effect of inhibiting translation initiation in combination with cytotoxic agents in acute myelogenous leukemia cells. Leukemia Research, 2010, 34, 535-541.	0.8	55
68	2′,3′â€Cyclic nucleotide 3′â€phosphodiesterase: A novel RNAâ€binding protein that inhibits protein synt Journal of Neuroscience Research, 2009, 87, 1069-1079.	hesis. 2.9	54
69	The translation inhibitor pateamine A prevents cachexia-induced muscle wasting in mice. Nature Communications, 2012, 3, 896.	12.8	54
70	Identification of nuclear localization signals within the zinc fingers of the WT1 tumor suppressor gene product. FEBS Letters, 1996, 393, 41-47.	2.8	52
71	PAM multiplicity marks genomic target sites as inhibitory to CRISPR-Cas9 editing. Nature Communications, 2015, 6, 10124.	12.8	52
72	The Antidepressant Sertraline Inhibits Translation Initiation by Curtailing Mammalian Target of Rapamycin Signaling. Cancer Research, 2010, 70, 3199-3208.	0.9	51

#	Article	IF	CITATIONS
73	Emerging Therapeutics Targeting mRNA Translation. Cold Spring Harbor Perspectives in Biology, 2012, 4, a012377-a012377.	5.5	51
74	Structure–activity relationships of quassinoids for eukaryotic protein synthesis. Cancer Letters, 2005, 220, 37-48.	7.2	50
75	Chlorolissoclimides: New inhibitors of eukaryotic protein synthesis. Rna, 2006, 12, 717-725.	3.5	50
76	Hippuristanol - A potent steroid inhibitor of eukaryotic initiation factor 4A. Translation, 2016, 4, e1137381.	2.9	50
77	Targeting Translation Dependence in Cancer. Oncotarget, 2011, 2, 76-88.	1.8	50
78	Translation initiation factor elF4F modifies the dexamethasone response in multiple myeloma. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13421-13426.	7.1	49
79	Synthesis of the Antiproliferative Agent Hippuristanol and Its Analogues via Suárez Cyclizations and Hg(II)-Catalyzed Spiroketalizations. Journal of Organic Chemistry, 2011, 76, 1269-1284.	3.2	48
80	Single-Molecule Kinetics of the Eukaryotic Initiation Factor 4AI upon RNA Unwinding. Structure, 2014, 22, 941-948.	3.3	48
81	O-GlcNAcylation of core components of the translation initiation machinery regulates protein synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7857-7866.	7.1	48
82	Rocaglates Induce Gain-of-Function Alterations to elF4A and elF4F. Cell Reports, 2020, 30, 2481-2488.e5.	6.4	48
83	Different transcriptional properties of mSim-1 and mSim-2. FEBS Letters, 2000, 466, 80-86.	2.8	47
84	Hepatitis C virus-related internal ribosome entry sites are found in multiple genera of the family Picornaviridae. Journal of General Virology, 2006, 87, 927-936.	2.9	47
85	Cap-dependent eukaryotic initiation factor-mRNA interactions probed by cross-linking. Rna, 2008, 14, 960-969.	3.5	47
86	Translation initiation: a critical signalling node in cancer. Expert Opinion on Therapeutic Targets, 2009, 13, 1279-1293.	3.4	47
87	Minor C-geranylated flavanones from Paulownia tomentosa fruits with MRSA antibacterial activity. Phytochemistry, 2013, 89, 104-113.	2.9	46
88	A harmine-derived beta-carboline displays anti-cancer effects in vitro by targeting protein synthesis. European Journal of Pharmacology, 2017, 805, 25-35.	3.5	46
89	Efficient Synthetic Approach to Potent Antiproliferative Agent Hippuristanol via Hg(II)-Catalyzed Spiroketalization. Organic Letters, 2010, 12, 4420-4423.	4.6	45
90	Amidino-Rocaglates: A Potent Class of elF4A Inhibitors. Cell Chemical Biology, 2019, 26, 1586-1593.e3.	5.2	45

#	Article	IF	CITATIONS
91	Persistent Transcription- and Translation-Dependent Long-Term Potentiation Induced by mGluR1 in Hippocampal Interneurons. Journal of Neuroscience, 2009, 29, 5605-5615.	3.6	44
92	Perturbations of RNA helicases in cancer. Wiley Interdisciplinary Reviews RNA, 2013, 4, 333-349.	6.4	42
93	eIF4AII is dispensable for miRNA-mediated gene silencing. Rna, 2015, 21, 1826-1833.	3.5	42
94	2'-O-methylation of the mRNA capÂprotects RNAs from decapping and degradation by DXO. PLoS ONE, 2018, 13, e0193804.	2.5	42
95	Functional characterization of WT1 binding sites within the human vitamin D receptor gene promoter. Physiological Genomics, 2001, 7, 187-200.	2.3	41
96	An upstream open reading frame impedes translation of the huntingtin gene. Nucleic Acids Research, 2002, 30, 5110-5119.	14.5	41
97	Phenylpyrrolocytosine as an Unobtrusive Base Modification for Monitoring Activity and Cellular Trafficking of siRNA. ACS Chemical Biology, 2011, 6, 912-919.	3.4	40
98	Amygdala inhibitory neurons as loci for translation in emotional memories. Nature, 2020, 586, 407-411.	27.8	40
99	Activation of the wt1 Wilms' tumor suppressor gene by NF-κB. Oncogene, 1998, 16, 2033-2039.	5.9	39
100	Ribavirin is not a functional mimic of the 7-methyl guanosine mRNA cap. Rna, 2005, 11, 1238-1244.	3.5	39
101	General and Target-Specific DExD/H RNA Helicases in Eukaryotic Translation Initiation. International Journal of Molecular Sciences, 2020, 21, 4402.	4.1	38
102	The DNA binding domains of the WT1 tumor suppressor gene product and chimeric EWS/WT1 oncoprotein are functionally distinct. Oncogene, 1998, 16, 1021-1030.	5.9	37
103	Inhibitors of translation initiation as cancer therapeutics. Future Medicinal Chemistry, 2009, 1, 1709-1722.	2.3	37
104	Suppression of the DHX9 Helicase Induces Premature Senescence in Human Diploid Fibroblasts in a p53-dependent Manner. Journal of Biological Chemistry, 2014, 289, 22798-22814.	3.4	37
105	Beyond molecular tumor heterogeneity: protein synthesis takes control. Oncogene, 2018, 37, 2490-2501.	5.9	37
106	A CRISPR/Cas9 Functional Screen Identifies Rare Tumor Suppressors. Scientific Reports, 2016, 6, 38968.	3.3	36
107	Haploinsufficiency of the ESCRT Component HD-PTP Predisposes to Cancer. Cell Reports, 2016, 15, 1893-1900.	6.4	36
108	Synthesis facilitates an understanding of the structural basis for translation inhibition by the lissoclimides. Nature Chemistry, 2017, 9, 1140-1149.	13.6	36

#	Article	IF	CITATIONS
109	Consecutive interactions with HSP90 and eEF1A underlie a functional maturation and storage pathway of AID in the cytoplasm. Journal of Experimental Medicine, 2015, 212, 581-596.	8.5	35
110	Synthesis of <i>Aza</i> â€Rocaglates via ESIPTâ€Mediated (3+2) Photocycloaddition. Chemistry - A European Journal, 2016, 22, 12006-12010.	3.3	34
111	Selective targeting of the DEAD-box RNA helicase eukaryotic initiation factor (eIF) 4A by natural products. Natural Product Reports, 2020, 37, 609-616.	10.3	34
112	The multifaceted eukaryotic cap structure. Wiley Interdisciplinary Reviews RNA, 2021, 12, e1636.	6.4	33
113	Blocking UVâ€Induced eIF2α Phosphorylation with Small Molecule Inhibitors of GCN2. Chemical Biology and Drug Design, 2009, 74, 57-67.	3.2	32
114	RNAi screening uncovers Dhx9 as a modifier of ABT-737 resistance in an Eμ-myc/Bcl-2 mouse model. Blood, 2013, 121, 3402-3412.	1.4	32
115	Multiple components of eIF4F are required for protein synthesis-dependent hippocampal long-term potentiation. Journal of Neurophysiology, 2013, 109, 68-76.	1.8	30
116	Eukaryotic initiation factor 4F: a vulnerability of tumor cells. Future Medicinal Chemistry, 2012, 4, 19-31.	2.3	29
117	Requirements for elF4A and elF2 during translation of Sindbis virus subgenomic mRNA in vertebrate and invertebrate host cells. Cellular Microbiology, 2013, 15, 823-840.	2.1	29
118	Modulation of EWS/WT1 activity by the v-Src protein tyrosine kinase. FEBS Letters, 2000, 474, 121-128.	2.8	28
119	Isoflavones and Rotenoids from the Leaves of <i>Millettia oblata</i> ssp. <i>teitensis</i> . Journal of Natural Products, 2017, 80, 2060-2066.	3.0	28
120	Therapeutic Opportunities in Eukaryotic Translation. Cold Spring Harbor Perspectives in Biology, 2018, 10, a032995.	5.5	28
121	Polyoxygenated Cyclohexenes and Other Constituents of <i>Cleistochlamys kirkii</i> Leaves. Journal of Natural Products, 2017, 80, 114-125.	3.0	27
122	A comparative study of small molecules targeting eIF4A. Rna, 2020, 26, 541-549.	3.5	27
123	Functional characterization of ORCTL2 - an organic cation transporter expressed in the renal proximal tubules. FEBS Letters, 1998, 433, 245-250.	2.8	26
124	Chemical Synthesis Enables Structural Reengineering of Aglaroxin C Leading to Inhibition Bias for Hepatitis C Viral Infection. Journal of the American Chemical Society, 2019, 141, 1312-1323.	13.7	26
125	Internal Translation Initiation Mediated by the Angiogenic Factor Tie2. Journal of Biological Chemistry, 2005, 280, 20945-20953.	3.4	25
126	eIF4A Inhibitors Suppress Cell-Cycle Feedback Response and Acquired Resistance to CDK4/6 Inhibition in Cancer. Molecular Cancer Therapeutics, 2019, 18, 2158-2170.	4.1	25

#	Article	IF	CITATIONS
127	Functional mimicry revealed by the crystal structure of an eIF4A:RNA complex bound to the interfacial inhibitor, desmethyl pateamine A. Cell Chemical Biology, 2021, 28, 825-834.e6.	5.2	25
128	Suppression of eukaryotic initiation factor 4E prevents chemotherapy-induced alopecia. BMC Pharmacology & Toxicology, 2013, 14, 58.	2.4	24
129	Rocaglates as dual-targeting agents for experimental cerebral malaria. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2366-E2375.	7.1	24
130	Cycloheximide and congeners as inhibitors of eukaryotic protein synthesis from endophytic actinomycetes Streptomyces sps. YIM56132 and YIM56141. Journal of Antibiotics, 2011, 64, 163-166.	2.0	23
131	Intercepted Retro-Nazarov Reaction: Syntheses of Amidino-Rocaglate Derivatives and Their Biological Evaluation as eIF4A Inhibitors. Journal of the American Chemical Society, 2019, 141, 12891-12900.	13.7	23
132	Increased in vitro and in vivo sensitivity of BRCA2-associated pancreatic cancer to the poly(ADP-ribose) polymerase-1/2 inhibitor BMN 673. Cancer Letters, 2015, 364, 8-16.	7.2	22
133	Identification and characterization of hippuristanol-resistant mutants reveals eIF4A1 dependencies within mRNA 5′ leader regions. Nucleic Acids Research, 2020, 48, 9521-9537.	14.5	22
134	Characterization of an abundant short interspersed nuclear element (SINE) present in Canis familiaris. Mammalian Genome, 1998, 9, 64-69.	2.2	21
135	Obatoclax is a direct and potent antagonist of membrane-restricted Mcl-1 and is synthetic lethal with treatment that induces Bim. BMC Cancer, 2015, 15, 568.	2.6	21
136	Huwe1 Regulates the Establishment and Maintenance of Spermatogonia by Suppressing DNA Damage Response. Endocrinology, 2017, 158, 4000-4016.	2.8	21
137	Desmocollin 1 is abundantly expressed in atherosclerosis and impairs high-density lipoprotein biogenesis. European Heart Journal, 2018, 39, 1194-1202.	2.2	21
138	RNA-tethering assay and elF4G:elF4A obligate dimer design uncovers multiple elF4F functional complexes. Nucleic Acids Research, 2020, 48, 8562-8575.	14.5	21
139	Forced engagement of a RNA/protein complex by a chemical inducer of dimerization to modulate gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1882-1887.	7.1	20
140	Inhibitory properties of nucleic acid-binding ligands on protein synthesis. FEBS Letters, 2005, 579, 79-89.	2.8	20
141	Inhibitors of Translation Targeting Eukaryotic Translation Initiation Factor 4A. Methods in Enzymology, 2012, 511, 437-461.	1.0	20
142	Drug-induced Stress Granule Formation Protects Sensory Hair Cells in Mouse Cochlear Explants During Ototoxicity. Scientific Reports, 2019, 9, 12501.	3.3	20
143	Activation of the <i>WT1</i> tumor suppressor gene promoter by Pea3. FEBS Letters, 2004, 560, 183-191.	2.8	19
144	Inhibition of translation by cytotrienin A–a member of the ansamycin family. Rna, 2010, 16, 2404-2413.	3.5	19

#	Article	IF	CITATIONS
145	Differential action of pateamine A on translation of genomic and subgenomic mRNAs from Sindbis virus. Virology, 2015, 484, 41-50.	2.4	19
146	The von Hippel-Lindau Protein pVHL Inhibits Ribosome Biogenesis and Protein Synthesis. Journal of Biological Chemistry, 2013, 288, 16588-16597.	3.4	17
147	Adapting CRISPR/Cas9 for Functional Genomics Screens. Methods in Enzymology, 2014, 546, 193-213.	1.0	17
148	Translation Inhibition by Rocaglates Is Independent of eIF4E Phosphorylation Status. Molecular Cancer Therapeutics, 2016, 15, 136-141.	4.1	17
149	The mTORC1/S6K/PDCD4/eIF4A Axis Determines Outcome of Mitotic Arrest. Cell Reports, 2020, 33, 108230.	6.4	17
150	Identifying Small Molecule Inhibitors of Eukaryotic Translation Initiation. Methods in Enzymology, 2007, 431, 269-302.	1.0	16
151	The human insulin mRNA is partly translated via a cap- and eIF4A-independent mechanism. Biochemical and Biophysical Research Communications, 2011, 412, 693-698.	2.1	16
152	Internal translation initiation from HIV-1 transcripts is conferred by a common RNA structure. Translation, 2014, 2, e27694.	2.9	16
153	5,10b-Ethanophenanthridine amaryllidaceae alkaloids inspire the discovery of novel bicyclic ring systems with activity against drug resistant cancer cells. European Journal of Medicinal Chemistry, 2016, 120, 313-328.	5.5	16
154	Synthesis of the Antiproliferative Agent Hippuristanol and Its Analogues from Hydrocortisone via Hg(II)-Catalyzed Spiroketalization: Structure–Activity Relationship. Journal of Medicinal Chemistry, 2014, 57, 2511-2523.	6.4	15
155	Kaiso mediates human ICR1 methylation maintenance and H19 transcriptional fine regulation. Clinical Epigenetics, 2016, 8, 47.	4.1	15
156	Inducible Genome Editing with Conditional CRISPR/Cas9 Mice. G3: Genes, Genomes, Genetics, 2018, 8, 1627-1635.	1.8	15
157	Eukaryotic initiation factor 4F — sidestepping resistance mechanisms arising from expression heterogeneity. Current Opinion in Genetics and Development, 2018, 48, 89-96.	3.3	15
158	Effect of 2′-5′/3′-5′ phosphodiester linkage heterogeneity on RNA interference. Nucleic Acids Research 2020, 48, 4643-4657.	"14.5	15
159	elF4A inhibition prevents the onset of cytokine-induced muscle wasting by blocking the STAT3 and iNOS pathways. Scientific Reports, 2018, 8, 8414.	3.3	14
160	A New Benzopyranyl Cadenane Sesquiterpene and Other Antiplasmodial and Cytotoxic Metabolites from Cleistochlamys kirkii. Molecules, 2019, 24, 2746.	3.8	14
161	Tumor progression and metastasis: role of translational deregulation. Anticancer Research, 2012, 32, 3077-84.	1.1	14
162	Assessing eukaryotic initiation factor 4F subunit essentiality by CRISPR-induced gene ablation in the mouse. Cellular and Molecular Life Sciences, 2021, 78, 6709-6719.	5.4	13

#	Article	IF	CITATIONS
163	Regulation of Eukaryotic Initiation Factor 4All by MyoD during Murine Myogenic Cell Differentiation. PLoS ONE, 2014, 9, e87237.	2.5	12
164	Pterocarpans and isoflavones from the root bark of Millettia micans and of Millettia dura. Phytochemistry Letters, 2017, 21, 216-220.	1.2	12
165	A Meroisoprenoid, Heptenolides, and <i>C</i> -Benzylated Flavonoids from <i>Sphaerocoryne gracilis</i> ssp. <i>gracilis</i> . Journal of Natural Products, 2020, 83, 316-322.	3.0	12
166	Engineering immunoproteasome-expressing mesenchymal stromal cells: A potent cellular vaccine for lymphoma and melanoma in mice. Cell Reports Medicine, 2021, 2, 100455.	6.5	12
167	Throwing a monkey wrench in the motor: Targeting DExH/D box proteins with small molecule inhibitors. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 894-903.	1.9	11
168	<scp>SMARCB1</scp> loss induces druggable cyclin <scp>D1</scp> deficiency via upregulation of <scp><i>MIR17HG</i></scp> in atypical teratoid rhabdoid tumors. Journal of Pathology, 2020, 252, 77-87.	4.5	11
169	Wilms' Tumor: A Paradigm for Insights into Development and Cancer. Cancer Investigation, 1995, 13, 431-443.	1.3	10
170	High-throughput assays probing protein–RNA interactions of eukaryotic translation initiation factors. Analytical Biochemistry, 2009, 384, 180-188.	2.4	10
171	A New Natural Product Analog of Blasticidin S Reveals Cellular Uptake Facilitated by the NorA Multidrug Transporter. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	10
172	Eukaryotic Translation Initiation Factor 4AI: A Potential Novel Target in Neuroblastoma. Cells, 2021, 10, 301.	4.1	10
173	Loss of MYSM1 inhibits the oncogenic activity of cMYC in B cell lymphoma. Journal of Cellular and Molecular Medicine, 2021, 25, 7089-7094.	3.6	10
174	Abnormal gonadal differentiation in two subjects with ambiguous genitalia, Mullerian structures, and normally developed testes: Evidence for a defect in gonadal ridge development. Human Genetics, 1996, 97, 506-511.	3.8	9
175	The Wilms' tumor suppressor gene (wt1) product represses different functional classes of transcriptional activation domains. Nucleic Acids Research, 1999, 27, 2889-2897.	14.5	9
176	The Tie2 5′ untranslated region is inhibitory to 5′ end-mediated translation initiation. FEBS Letters, 2006, 580, 1309-1319.	2.8	8
177	Developing anti-neoplastic biotherapeutics against elF4F. Cellular and Molecular Life Sciences, 2017, 74, 1681-1692.	5.4	8
178	Oxo-aglaiastatin-Mediated Inhibition of Translation Initiation. Scientific Reports, 2019, 9, 1265.	3.3	8
179	USP44 is dispensable for normal hematopoietic stem cell function, lymphocyte development, and B-cell-mediated immune response in a mouse model. Experimental Hematology, 2019, 72, 1-8.	0.4	8
180	Targeting <scp>DEAD</scp> â€box <scp>RNA</scp> helicases: The emergence of molecular staples. Wiley Interdisciplinary Reviews RNA, 2023, 14, e1738.	6.4	8

#	Article	IF	CITATIONS
181	Homogenous Time Resolved Fluorescence Assay to Identify Modulators of Cap-Dependent Translation Initiation. Combinatorial Chemistry and High Throughput Screening, 2007, 10, 181-188.	1.1	7
182	Establishment of a Primary Screening Assay for the DHX9 Helicase. Combinatorial Chemistry and High Throughput Screening, 2015, 18, 855-861.	1.1	6
183	Tracing MYC Expression for Small Molecule Discovery. Cell Chemical Biology, 2019, 26, 699-710.e6.	5.2	5
184	Inhibiting mitochondrial-dependent proteolysis of Mcl-1 promotes resistance to DNA damage. Cell Cycle, 2012, 11, 88-98.	2.6	4
185	Stimulators of translation identified during a small molecule screening campaign. Analytical Biochemistry, 2014, 447, 6-14.	2.4	4
186	Data in support of a harmine-derived beta-carboline in vitro effects in cancer cells through protein synthesis. Data in Brief, 2017, 12, 546-551.	1.0	4
187	<i>Trans</i> -spliced mRNA products produced from circRNA expression vectors. Rna, 2021, 27, 676-682.	3.5	4
188	Dependence of p53-deficient cells on the DHX9 DExH-box helicase. Oncotarget, 2017, 8, 30908-30921.	1.8	4
189	TACIMA-218: A Novel Pro-Oxidant Agent Exhibiting Selective Antitumoral Activity. Molecular Cancer Therapeutics, 2021, 20, 37-49.	4.1	3
190	A forward genetic screen identifies modifiers of rocaglate responsiveness. Scientific Reports, 2021, 11, 18516.	3.3	3
191	CRISPR/Cas9 Editing to Facilitate and Expand Drug Discovery. Current Gene Therapy, 2018, 17, 275-285.	2.0	3
192	Methionine Sustituted Polyamides are RNAse Mimics that Inhibit Translation. Journal of Drug Targeting, 2004, 12, 125-134.	4.4	2
193	A cautionary note on the use of cap analogue affinity resins. Analytical Biochemistry, 2018, 560, 24-29.	2.4	2
194	CRISPR-Based Screen Links an Inhibitor of Nonsense-Mediated Decay to eIF4A3 Target Engagement. ACS Chemical Biology, 2020, 15, 1621-1629.	3.4	2
195	Inhibition of the Translation Initiation Factor eIF4A Enhances Tumor Cell Radiosensitivity. Molecular Cancer Therapeutics, 2022, 21, 1406-1414.	4.1	1
196	Competition of bacteriophage polypeptides with native replicase proteins for binding to the DNA sliding clamp reveals a novel mechanism for DNA replication arrest in Staphylococcus aureus. Molecular Microbiology, 2006, 62, 1764-1764.	2.5	0
197	Chemical and CRISPR/Cas9 Tools for Functional Characterization of RNA Helicases. , 2018, , 221-245.		0
198	Downstream from mTOR: Therapeutic Approaches to Targeting the eIF4F Translation Initiation		0

Complex. , 2009, , 257-285.

#	Article	IF	CITATIONS
199	Current and Emerging Therapies Targeting Translation. , 2014, , 279-304.		ο
200	Abnormal gonadal differentiation in two subjects with ambiguous genitalia, Mullerian structures, and normally developed testes: evidence for a defect in gonadal ridge development. Human Genetics, 1996, 97, 506-511.	3.8	0
201	Nephropathy with Wilms tumour or gonadal dysgenesis: incomplete Denys-Drash syndrome or separate diseases?. European Journal of Pediatrics, 1995, 154, 577-581.	2.7	Ο